

Report on the
Artificial Intelligence journal Special issue on
Combining Constraint Solving
with Mining and Learning

Tias Guns

IJCAI17 AI & CP workshop

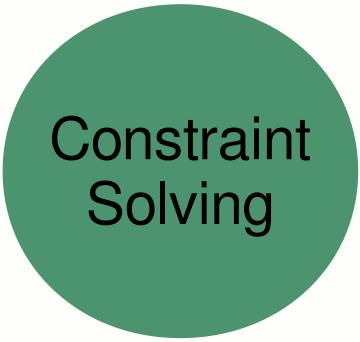
Context

AIJ Special issue: 17 papers, published 03/2017

Related events:

- Dagstuhl 11201 (2011): Constraint Programming meets Machine Learning and Data Mining
- ECAI 2012 workshop CoCoMile
- AAAI 2013 workshop CoCoMile
- Dagstuhl 14411 (2014): Constraints, Optimization and Data

Similar in spirit:


- Euro working group on Data Science meets Opt. (ds-o.org)
- CP 2017 track on CP & Machine Learning

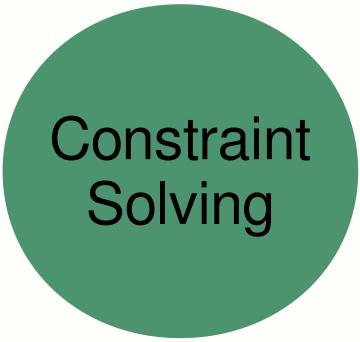
A.I.

Constraint
Solving

Machine
Learning
& Data
Mining

Constraint
Solving

?


Machine
Learning
& Data
Mining

Combinatorial problem solving

- constraint satisfaction/enumeration
- constraint optimisation

Extracting regularities from data

- repeating patterns
- function that discriminates classes
- function that estimates a value

Constraint Solving

Combinatorial problem solving

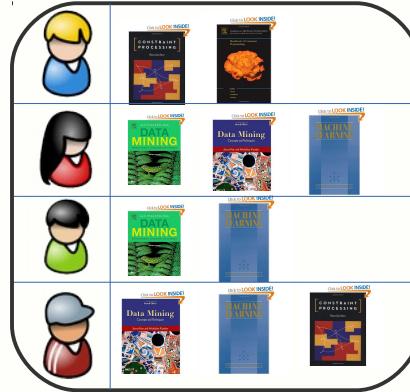
- constraints and objectives are functions
- search generates data

!

Machine Learning & Data Mining

Extracting regularities from data

- often is combinatorial optimisation
 - + more side constraints
(*in pattern mining, clustering, Bayesian networks*)
 - + more structure
(*in structured output prediction*)

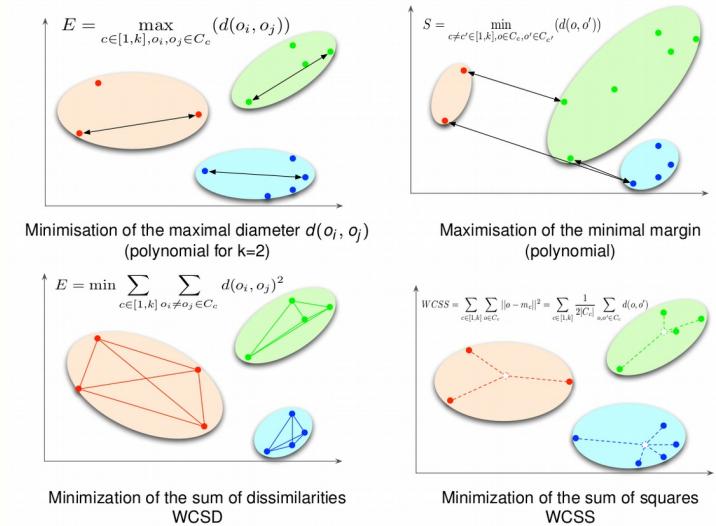

AIJ special issue topics:

- 1) Constraint Solving for ML & DM
- 2) ML & DM for Constraint Solving

Constraint Solving for ML & DM

Constraint-based itemset mining

Find all *frequent* sets of items in a dataset


- **Modeling language for constrained itemset mining**
[MiningZinc: a declarative framework for constraint-based mining. T. Guns, A. Dries, S. Nijssen, G. Tack and L. De Raedt]
- **Top-k SAT, for constrained itemsets and sequences**
[Mining Top-k Motifs with a SAT-based Framework. S. Jabbour, L. Sais and Y. Salhi]
- **Pareto front, equivalences and DynCSP**
[Skypattern Mining: from Pattern Condensed Representations to Dynamic Constraint Satisfaction Problem. W. Ugarte, P. Boizumault, B. Cremilleux, A. Lepailleur, S. Loudni, M. Plantevit, C. Raissi and A. Soulet]

Constraint Solving for ML & DM

Constrained clustering

Find a partitioning based on similarity

- Centroid-based (like k-means), CP
[Constrained Clustering by Constraint Programming.
T-B-H Dao, K-C Duong and C. Vrain]
- Hierarchical clustering, MIP
[A Flexible ILP Formulation for Hierarchical Clustering. S. Gilpin and I. Davidson]
- Correlation clustering, MaxSAT
[Cost-Optimal Constrained Correlation Clustering via weighted Partial Maximum Satisfiability. J. Berg and M. Jarvisalo]

Constraint Solving for ML & DM

ML with hard constraints

Find f , $f(X)$ approximates y for given (X, y) data

Structured X or structured y: adds structural constraints

- Predict structured output from structured input, OptSMT
[Structured Learning Modulo Theories. S. Teso, R. Sebastiani and A. Passerini]
- Sampling predictive structures, by learning quality function
[Learning an efficient constructive sampler for graphs. F. Costa]

Constraint Solving for ML & DM

ML with hard constraints

Find f , $f(X)$ approximates y for given (X, y) data

Learning with side-constraints

- Kernel machines and logical constraints between predicates
[Semantic-Based Regularization for Learning and Inference. M. Diligenti, M. Gori and C. Saccà]
- Bayesian Networks, with partial data and known equivalences therein.
[Learning Bayesian Networks under Equivalence Constraints. T. Yao, A. Choi and A. Darwiche]

Constraint Solving for ML & DM

ML with hard constraints

Find f , $f(X)$ approximates y for given (X, y) data

Learning as constrained optimisation

- Learn structure of Bayesian Network with MIP
[Integer Linear Programming for the Bayesian Network Structure Learning Problem. M. Bartlett and J. Cussens]
- Use *relational* LP for linear learning problems
[Relational Linear Programming. K. Kersting, M. Mladenov and P. Tokmakov]

ML & DM for Constraint Solving

Learning to solve better

- Automatic Construction of Parallel Portfolios via Algorithm Configuration
[M. Lindauer, H. Hoos, K. Leyton-Brown and T. Schaub]
- Algorithm Recommender System. Application to Algorithm Portfolio Selection
[M. Misir and M. Sebag]

ML & DM for Constraint Solving

Learning better models

Learning constraints

- Constraint Acquisition
[C. Bessiere, F. Koriche, N. Lazaar and B. O'Sullivan]

Learning objective functions

- Learn NN/DT, use in CP,LS,MINLP,SMT
[Empirical Decision Model Learning. M. Lombardi, M. Milano and A. Bartolini]
- Learn DT/RT, use in MIP
[Auction Optimization using Regression Trees and Linear Models as Integer Programs. S. Verwer, Y. Zhang and Q. Chuan Ye]

→ Constraint Solving for ML & DM

- Constraint-based itemset mining
- Constrained clustering
- ML with hard constraints
 - structured input/output
 - side-constraints
 - with constraint solver

← ML & DM for Constraint Solving

- Learning to solve better
- Learning to model better (constraints and objectives)

Trends?

In constrained pattern mining and clustering:

- Typical problems:
 - Discrete problems
 - With additional, complex, side-constraints
 - Worthwhile to enumerate all solutions or find a near-optimal one
- Model classic setting so that additional constraints can be added
- Global constraints!
- Novel problem settings (too hard to write algo from scratch)

Trends?

In the machine learning papers:

- Additional constraints that are:
 - Hard
 - Not relaxable
 - Over discrete structures
- Some use a *solver*, some don't
- Harder to keep track of (different focus)

Trends?

Learning for solving

- Most mature topic
- Known under many names in diff. communities!
 - Algorithm selection/configuration [CP, SAT]
 - Hyperparameter Optimisation [ML]
 - Black box optimisation
 - Reinforcement learning...

All are advancing very rapidly and with moderately increasing interaction

Trends?

Learning constraints and objectives

Many open questions:

- hard/soft constraints?
- error/uncertainty of predictions?
- function complexity vs solving complexity?
(c.f. *tractable* learning in ML)

Outlook

- More structured problems in ML/DM
- More uncertainty in combinatorial problems
(from the problem domain or learned functions)
- More reinforcement learning everywhere
(sequential decision making under uncertainty)