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Abstract. The Holy Grail of programming was described in [7] as the
separation of modelling which problem we want to solve, and the ap-
plication of a tool (a Constraint Solver) to provide a solution from the
model. This requires a sophisticated system, which up to now needed to
be hand-coded by an expert. We want to go beyond this paradigm, by au-
tomatically discovering gaps in existing propagators, deriving a hypoth-
esis about missing propagation, proving or disproving the hypothesis,
and finally automatically generating an implementation of the improved
constraint propagator. As an example we use the area of time-series con-
straints.
We describe a method for discovering and proving generic invariants
linking together several characteristics of an integer sequence; generic
invariants are independent of the integer values used in the sequence,
but are possibly parameterized by the sequence size. The method con-
sists of three steps, namely (1) a mining phase where we systematically
generate integer sequences up to a given size, and extract conjectures
from the corresponding data sets, (2) a proof phase where we try to
prove conjectures by checking whether the conjunction of multiple time-
series constraints over this sequence is infeasible. We do this by exploiting
the descriptions of time-series constraints as automata with accumula-
tors. Finally we use proven conjectures in an (3) exploitation phase to
improve the propagators for the constraints. Preliminary tests indicate
that the discovered generic invariants can significantly speed up, both,
the proof of infeasibility, and more surprisingly, the generation of solu-
tions for a conjunction of time-series constraints on a common sequence.

1 Introduction

In the paper motivating this workshop [7], only the last paragraph (“Synthesis”)
talks about the automated generation of the Constraint Solver itself. As we
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observed in [3] based on [14], the complexity of developing and maintaining
specific propagators for particular constraints is one of the limiting factors in
the wider adoption of Constraint Programming. It is perhaps time to go beyond
the Holy Grail by automating the writing of (parts of) the Constraint Solver.
We will give an example of how we can discover, prove correct and implement
improved propagators for a family of time-series constraints by an automated
process.

While artificial intelligence has considered from its very beginning the pos-
sibility to automate the process of scientific discovery [12], relatively little work
has been carried out in this area [15]. One of the main reasons for this situation is
that scientific discovery not only needs to establish conjectures, but also requires
to prove or to invalidate (and fix) them. While the human process to deal with
proofs and refutation has been analyzed in the context of mathematics [11],
most computer science work has focused on the first part, namely generating
conjectures both for specific domains like graph theory [9], or for more general
domains [6,13]. The main reason for this situation is that the proof part is a key
bottleneck, as it is much more challenging to automate as already observed in [4],
even if programs that could prove theorems in propositional or first order logic
already exist since the fifties [18]. Nowadays there is a renewed interest in proof
assistants like Isabelle [19] or Coq [5]; nevertheless such assistants still require
describing and formalizing a proof based on human insight, which is typically
demanding for proving or invalidating a large set of conjectures about discrete
combinatorial objects. More recently, both in the context of circuit design and
program verification, mining Boolean expressions, and Boolean combinations of
numerical inequalities was respectively done in [8] and [10]. The later uses a
theorem prover to verify the proposed invariants.

The main contribution of this paper is to provide for the domain of time-series
constraints on integer sequences a methodology, which both proposes conjec-
tures, and proves them in an automated way by deriving automata that describe
properties of the conjecture and by intersecting them. The technical contribu-
tions are as follows:

1. To the best of our knowledge we show for the first time that deterministic
automata without accumulators can be used to represent in constant space
all maximal solutions attached to some bounds.

2. Unlike previous work which considers intersecting automata to get a simpli-
fied automata [17,16], we intersect automata to find out in a preprocessing
phase conditions characterizing infeasible sets of points that can be used
later on to enhance propagation.

We now put this contribution in the context of our recent work on time-series
constraints.

In [2] we presented a compositional method for deriving linear invariants
for a conjunction of global constraints that are each represented by an automa-
ton, possibly, with accumulators. The experiments revealed that in some cases,
despite imposing tight linear invariants linking the result variables of the con-
straints in the conjunction, the solver could still take a lot of time to find a
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feasible solution. After some investigation it turned out that this happens be-
cause of some infeasible combinations of values of the result variables that were
located within the convex hull of feasible solutions. Consequently, this work fo-
cuses on automatically extracting and proving invariants that characterize some
subsets of infeasible points that are all located inside the convex hull of feasible
points. The approach uses three sequential phases:

– Given a conjunction of two time-series constraints on the same sequence of
variables, the mining phase generates in a systematic way all solutions for
small sequence sizes; then it uses a simple bias based on Boolean combina-
tions of arithmetic constraints, possibly parameterized by the sequence size,
to derive multiple conjectures, which characterize subsets of infeasible points
that are located within the convex hull of all feasible points, and that occur
for all generated sequence sizes.

– The proof phase synthesizes, from each arithmetic constraint that occurs in
a Boolean expression characterizing a subset of infeasible points, a finite au-
tomaton without accumulators that has a constant size; having a constant
size is crucial for generating sequence size independent invariants. We sketch
for one of the arithmetic constraints how to generate the corresponding con-
stant size automata that do not use any accumulators. If the intersection of
these automata is empty, we have proven the conjecture, otherwise we can
use the intersection to provide a counter-example.

– For all proven conjectures, we automatically generate propagation rules that
are used in the exploitation phase that not only prune infeasible assignments,
but which also help to find feasible solutions more rapidly.

2 Example

As an illustrative example, we consider the conjunction of two time-series con-
straints [1] sum_width_decreasing_sequence(〈X1, X2, . . . , Xn〉, R1) and
sum_width_zigzag(〈X1, X2, . . . , Xn〉, R2), as shown in Figure 1. It shows for
sequences of length between 9 and 12 (only size 9 shown), in blue all combinations
of values for the constraints that are achieved for at least one value assignment.
The resulting convex hull is given by red lines, each segment corresponds to a
linear inequality that characterises the conjunction as described in [2]. Points in
red are infeasible value combinations inside (or on) the convex hull, these are not
removed by the linear inequalities. Instead, we now try to learn rules to remove
these points for any, arbitrary sequence length. We generate six groups of points
that lead to six invariants, one shown in each of the plots. We now have to check
each conjecture by deriving automata without accumulators that describe the
constraints under the given conditions, and then check their conjunction.

We do this by constructing an automaton for each member of the bias
from the original time-series constraint. Figure 2 shows an example for the
sum_width_decreasing_sequence(〈X1, X2, . . . , Xn〉, R1) constraint and the
bias element odd, which is used in Group 6 of Figure 1. The automaton with
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Fig. 1: The first six groups of infeasible points for sequence sizes n ∈
{9, 10, 11, 12} illustrated for n = 9; note that within Group °, the term n in-
side the condition R1 = n corresponds to the upper bound of R1 of constraint
sum_width_decreasing_sequence(X,R1).

two accumulators D and R for the original constraint is on the left, the resulting
automaton that checks that the value R of the constraint is odd is on the right.
It is obtained by a systematic construction, the states s and t on the left are
each replaced by four states s(y1, y2) resp. t(y1, y2) on the right, which encode
whether the two accumulator values are odd or even. The first position repre-
sents the accumulator D, the second the result value R. Accepting states are
those for which R is odd, i.e. the value of y2 is 1. Edges in the automaton on the
right correspond to edges in the original automaton, keeping track of changes in
the parity of the accumulators. Note that the resulting automaton does not use
accumulators, but encodes its properties in its states. Similar constructions are
used for all other members of the bias.
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Fig. 2: (a) Automaton for the sum_width_decreasing_sequence time-
series constraint; (b) Automata for property R is odd, constructed from (a)
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