
The ModelSeeker - Learning
Structured Constraint Models from
Example Solutions

Helmut Simonis

Progress Towards the Holy Grail Workshop, CP 2017

Joint work with...

• Nicolas Beldiceanu, TASC team (CNRS/INRIA), IMT
Atlantique, France

• Contributions by
• Georgiana Ifrim, Insight UCD, Ireland
• Arnaud Lenoir, EDF Research, France
• Jean-Yves Lucas, EDF Research, France
• Mats Carlsson, SICS, Sweden
• Naina Razakarison, ENS Cachan, France

• Special thanks for examples due to
• Hakan Kjellerstrand, Sweden

Insight Centre for Data Analytics Slide 2PTHG-17

Outline

Background

Part I: Learning global constraint Models from Sample
Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

Insight Centre for Data Analytics Slide 3PTHG-17

In Pursuit of the Holy Grail

• ‘‘Constraint Programming represents one of the closest
approaches computer science has yet made to the Holy
Grail of programming: the user states the problem, the
computer solves it.’’ [E. Freuder]

• Why do we have to specify the problem? The computer
should at least help us to do this.

Insight Centre for Data Analytics Slide 4PTHG-17

What is New?

• Exploit regular structure of many constraint problems

• Global Constraint Catalog provides repository of
constraints used in systems

• Provides appropriate bias for learning models

• Use meta-data describing key properties of global
constraints

• Use logic programming to provide flexible environment

Insight Centre for Data Analytics Slide 5PTHG-17

Is this different?

• Constraint Aquisition
• Version space learning
• Learning binary constraints
• Asking many, many questions
• Even if query complexity is optimal

• Inductive Logic Programming
• Generate size independent models
• Does not understand global constraints

Insight Centre for Data Analytics Slide 6PTHG-17

Structure of Talk

• Learning models from solutions of fixed size

• How to generalize models by learning size parameters

• Industrial case study (EDF generator profiles)

Insight Centre for Data Analytics Slide 7PTHG-17

Basic Process

Problem

Human

Model

Constraint Solver/Search

Solution

Insight Centre for Data Analytics Slide 8PTHG-17

Dual Role of Model

• Allows Human to Express Problem
• Close to Problem Domain
• Constraints as Abstractions

• Allows Solver to Execute
• Variables as Communication Mechanism
• Constraints as Algorithms

Insight Centre for Data Analytics Slide 9PTHG-17

Global Constraint Catalog

• Collection of global constraints described in systems
(Beldiceanu, Carlsson from 1999)

• Human and machine readable format

• Describe properties and relations between constraints

• Currently 443 constraints on 2712 pages

• 50000 lines of Prolog description

Insight Centre for Data Analytics Slide 10PTHG-17

Outline

Background

Part I: Learning global constraint Models from Sample
Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

Insight Centre for Data Analytics Slide 11PTHG-17

Constraint exam (Polytechnique 2011)

http://www.enseignement.polytechnique.fr/informatique/INF580/exams/ C. Durr

ORIGINAL QUESTION (in French)

AN EXAMPLE

n Samuraïs: model
sample model

3 0 2 1

n Samuraïs: model
samples model

3 0 2 1

Eliminated if we
provide more samples

0 2 1 3
…………..

n Samuraïs model
(two conjunctions of similar constraints)

alldifferent_consecutive_values(<V1,V2,V3,V4>)

alldifferent_interval(<V1,V2>, 2)

alldifferent_interval(<V3,V4>, 2)
V1=2*Q1+R1 (0 ≤ R1 <2)
V2=2*Q2+R2 (0 ≤ R2 <2)
alldifferent(<Q1,Q2>)

reformulation

Workflow of the learning procedure
(from samples to program)

• Transformations
• Partition generators
• Arguments creation
• Constraint seeker
• Domain creation
• Link between object attributes
• Dominance check (crucial)
• Trivial suppression
• Code generation

(catalog syntax, FlatZinc)

of learned
conjunctions

2 4 6 8 3 1 7 5
sample(s)

model

number

Points to remember

• Learning constraint models from positive examples
• Start with vector of values
• Group into regular pattern
• Find constraint pattern that apply to group elements
• Using Constraint Seeker for Global Constraint Catalog
• Works for highly structured problems

User oriented input format

Ideally, starts from the format used in books, on the web
for presenting the solution of a problem.
(there may be more than one way)

Very often solutions are represented as
one (or several) tables, boards, grids, … ,
with (sometime) extra information (hints, parameters)

We start from that idea

Input format: flat sequence of integers
Source: w

ikipedia

2 4 6 8 3 1 7 5

1 3 5 7 2 0 6 4

2 12 22 32 35 41 55 61

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

1 2 2 4 3 6 4 8 5 3 6 1 7 7 8 5

(positions in the different columns, start from 1)

(positions in the different columns, start from 0)

(index of cells, start from 1, ordered)

22 12 55 61 32 35 2 41
(index of cells, start from 1, not ordered)

(coordinates of cells, start from 1, ordered)

(flat 0/1 matrix, 1 for occupied cells)

different representations
for the same solution

input format:
parameters

ca
r s

eq
ue

nc
in

g

lo
gi

gr
ap

he

Integrated in the sample:
automatically extracted by

transformations

Transformations

• Extract substructures from samples
– Extracting overlapping grids from irregular shapes
– Distinguish main grid from hints on column and/or rows

• Derive new samples from samples
– Build triangular differences table
– Take sign and/or absolute value

• Handle multiple input formats (in a transparent way)
– Bijection
– Tour/Path
– Domination in graphs

Transformations, example 1
(Extracting overlapping grids from irregular shapes)

Cover the non-empty space by the
minimum number of rectangles in
such a way that the maximum
intersection between any pairs
of rectangles is minimized.

IDEA
Flower Sudoku

use a constraint program

Leaper graphs in Selected Papers
on Fun and Games [Knuth 2010]
the tour is given in base 9
(in order to highlight symmetries)

Euler first example on open knight’s tour;
the numbers mark the order of the cells
the knight visit

Numberlink (Nikoli)
all cells belonging to a same path
are labelled by the same number

…
…
…
…

…………………………………

…
…
…
…

……………………………

…………………………

Transformations, Example 2
(tours/paths) Convert to successor representation

and
check that the underlying graph is regular

Magic Square Example

Albrecht Dürer: Melencolia I (1514)

Partition generators

Structured groups of variables passed to
a conjunction of identical constraints

sample

Partition generators

Structured groups of variables passed to
a conjunction of identical constraints

sample

Partition generators

Structured groups of variables passed to
a conjunction of identical constraints

sample

Partition generators

Structured groups of variables passed to
a conjunction of identical constraints

sample

surprise

surprise

surprise

Partition generators

Structured groups of variables passed to
a conjunction of identical constraints

sample

Partition generators

Structured groups of variables passed to
a conjunction of identical constraints

sample

surprise

surprise

Partition generators (end)

Structured groups of variables passed to
a conjunction of identical constraints

sample

symmetric_alldiff_loop(<x1,x2,…,xn>)

xi=j xj=i (i may be equal to j)

surprise

x1,x2,…,xn is a permutation
of order 2 (an involution)

Arguments creation + Constraint seeker

• Arguments creation
– Use partition generators
– Add arguments

• as parameters (extracted from sample)
• through functional dependency

• Constraint seeker (CP 2011)
– Only typical use

EXAMPLE

Dominance check

• Certain conjunctions of constraints are dominated by
others (crucial to eliminate them to restrict output)

• Weaker than full implication
• Use:

– Implication and conditional implication (given in the catalog)
• Sum of squares constraint equivalent to sum (if 0/1 variables)

– Properties of constraints arguments (given in the catalog)
• Contractible (alldifferent)
• Extensible (atleast)
• Aggregation (among)

– Ad hoc conditional implication (about 10 currently)

Evaluation: Problem Sizes

• 350 instances considered
– Special thanks to Håkan Kjellerstrand
– Sample sizes (from 4 up to 6551)
– Number of samples (from 1 up to 7040)

Usually one single sample is enough
(crucial point for a realistic use)

A fair variety of problem types

No attack on a board
Domination on a graph
Tour/path on a graph
Balanced block design
Latin squares
Sudoku
Sport scheduling
Scheduling
Packing
Magic/bimagic
Miscellaneous

(e.g. queen, amazon, samuraï)
(e.g. queen, knight on a board, on a cube)

(e.g. knight, leaper, number link)
(e.g. BIBD, Steiner, Kirkman)

(e.g. standard, self-symmetric, orthogonal)
(e.g. consecutive, samurai, anti diagonal, twin)

(e.g. ACC Basketball, Bundesliga, Whist)
(e.g. Job Shop)

(e.g. squared squares, pallet loading, Conway 3d)
(e.g. sequence, squares, cubes)

(e.g. tomography, progressive party, car sequencing)

Results: Some Stats

Time : from 20 ms up to 5 min.
Calls to the seeker : up to 5,044 calls
Calls to Constraints : up to 1,100,000 calls
Found conjunctions : up to 2207 (before dominance check)
constraints used : 69(130) out of 399 constraints in the catalog

Conclusion

• Learning constraint models from very small sets of
positive examples

• Start with vector of values
• Group into regular pattern
• Find constraint pattern that apply on group elements
• Using Constraint Seeker for Global Constraint Catalog
• Works for highly structured problems

Remarks
• Having many constraints allows to get precise models
• Filtering not used at all (but need efficient checkers)
• AI approach to learning (knowledge base/no statistics)
• Master student level (maybe)
• Of course the program does not invent new constraints,

new generators, new transformations, … .
• Should provide an interface for presenting global

constraint to normal users (natural language +
first order logical formulae for many constraints).

Extensive use of meta data describing constraints (e.g., typical case,
functional dependency, imply, contractibility, checker, …)

Why does it work at all?

• Searching for conjunction of similar global
constraints is the correct level of abstraction
(finding structured models)

• Learning at the level of a modelling language
(OPL, Zinc, Essence) is too hard, as the language
is too expressive

• Learning inequalities (MIP) or clauses (SAT) is too
generic

Global constraints are usually introduced for
filtering, but they are key modelling constructs,
and allow effective learning of models

Outline

Background

Part I: Learning global constraint Models from Sample
Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

Insight Centre for Data Analytics Slide 12PTHG-17

From Fixed Size Samples to Generic Models

• Work in progress

• Combine models found for multiple problem sizes

• Replace size specific parameters with size dependent
functions

• Suggest potential solutions from (very) few samples

Insight Centre for Data Analytics Slide 13PTHG-17

Example: Sudoku 9x9

Partition sample in different ways:
11 22 63 44 35 76 97 58 89

810 911 512 613 214 115 416 717 318

319 720 421 922 823 524 125 226 627

428 529 730 131 932 333 834 635 236

937 838 339 240 441 642 543 144 745

646 147 248 549 750 851 352 953 454

255 656 957 358 159 460 761 862 563

564 465 866 767 668 969 270 371 172

773 374 175 876 577 278 679 480 981

11 22 63 44 35 76 97 58 89

810 911 512 613 214 115 416 717 318

319 720 421 922 823 524 125 226 627

428 529 730 131 932 333 834 635 236

937 838 339 240 441 642 543 144 745

646 147 248 549 750 851 352 953 454

255 656 957 358 159 460 761 862 563

564 465 866 767 668 969 270 371 172

773 374 175 876 577 278 679 480 981

11 22 63 44 35 76 97 58 89

810 911 512 613 214 115 416 717 318

319 720 421 922 823 524 125 226 627

428 529 730 131 932 333 834 635 236

937 838 339 240 441 642 543 144 745

646 147 248 549 750 851 352 953 454

255 656 957 358 159 460 761 862 563

564 465 866 767 668 969 270 371 172

773 374 175 876 577 278 679 480 981

Generated Model (compact representation):
scheme(81,9,9,9,1) permutation*9
scheme(81,9,9,3,3) permutation*9
scheme(81,9,9,1,9) permutation*9

Insight Centre for Data Analytics Slide 14PTHG-17

Example: Sudoku 9x9,16x16,25x25

Sudoku 9x9
scheme(81,9,9,9,1) permutation*9
scheme(81,9,9,3,3) permutation*9
scheme(81,9,9,1,9) permutation*9

Sudoku 16x16
scheme(256,16,16,16,1) permutation*16
scheme(256,16,16,4,4) permutation*16
scheme(256,16,16,1,16) permutation*16

Sudoku 25x25
scheme(625,25,25,25,1) permutation*25
scheme(625,25,25,5,5) permutation*25
scheme(625,25,25,1,25) permutation*25

Insight Centre for Data Analytics Slide 15PTHG-17

Next Step: Generalize Models

• Find parametrized models

• One model for all problem sizes

• Parameters expressed as polynomials of one or multiple
parameters

• Assumptions
• Very few (1-3) samples
• Highly structured problems lead to simple polynomials

• Learning polynomials is expressed as a constraint
problem

Insight Centre for Data Analytics Slide 16PTHG-17

Generic Model: Sudoku n × n

From multiple specific models:

Sudoku 9x9
scheme(81,9,9,9,1) permutation*9
scheme(81,9,9,3,3) permutation*9
scheme(81,9,9,1,9) permutation*9

Sudoku 16x16
scheme(256,16,16,16,1) permutation*16
scheme(256,16,16,4,4) permutation*16
scheme(256,16,16,1,16) permutation*16

Sudoku 25x25
scheme(625,25,25,25,1) permutation*25
scheme(625,25,25,5,5) permutation*25
scheme(625,25,25,1,25) permutation*25

To one generic model:
scheme(n4,n2,n2,n2,1) permutation*n2

scheme(n4,n2,n2,n,n) permutation*n2

scheme(n4,n2,n2,1,n2) permutation*n2

Insight Centre for Data Analytics Slide 17PTHG-17

More Complex Example: Magic Hexagon

18

11

9

17

1

6

14

3

7

5

8

15

19

2

4

13

16

12

10
5 samples, independent para-
meters x1 = [3,4,5,6,7],
x2 = [1,3,6,21,2], de-
pendent parameter y1 =
[190,777,2196,6006,8255]

2y1k = 9x4
1k + 6x2

1kx2k − 18x3
1k − 6x1kx2k + 12x2

1k + 2x2k − 3x1k

Insight Centre for Data Analytics Slide 18PTHG-17

Outline

Background

Part I: Learning global constraint Models from Sample
Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

Insight Centre for Data Analytics Slide 19PTHG-17

Take away message

• Apply ModelSeeker Approach to problem from EDF

• Find constraints in Unit Commitment Problem

• Modelled with constraints having functional
dependencies

• Generate sample output similar to input data

Insight Centre for Data Analytics Slide 20PTHG-17

EDF Unit Commitment Model (UCM)

• Planning the use of all power stations in France for next
two days

• Run every day

• Based on demand prediction, minimizing production cost

• Each plant is defined by its own constraints

• Very large optimization model (MIP/Lagrangian
Relaxation)

• Execution time critical to process

Insight Centre for Data Analytics Slide 21PTHG-17

Problem: Identify Plant Specific Constraints

• Large part of model are plant specific constraints

• This determines how a plant can be scheduled

• Big differences between different types of plants
(nuclear, thermal, hydro)

• Different parameter values for each plant (even if same
type)

• Ignore at the moment:
• Matching demand (+ handling of reserves)
• Minimizing cost
• Seasonal/weather effects (especially hydro)

Insight Centre for Data Analytics Slide 22PTHG-17

Schema

Demand
Forecast Unit Commitment Model

Cost
Constraints

Demand
Constraints

Plant Specific
Constraints

Provisional
Schedule

Manual
Schedule

Model
Seeker

Model
Seeker

Comparison

User

Insight Centre for Data Analytics Slide 23PTHG-17

Example: From this...

Insight Centre for Data Analytics Slide 24PTHG-17

... to this (Generated Profile)

��

���

���

���

���

���

���

���

���

���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

Insight Centre for Data Analytics Slide 25PTHG-17

Summary

• Learning constraint models from few, positive examples

• Generalize models to arbitrary size (work in progress)

• Specific problem domain leads to more specific model
generator

Insight Centre for Data Analytics Slide 26PTHG-17

Bibliography

• N. Beldiceanu, H. Simonis: A Constraint Seeker: Finding
and Ranking Global Constraints from Examples. CP 2011:
12-26

• N. Beldiceanu, H. Simonis: A Model Seeker: Extracting
Global Constraint Models from Positive Examples. CP
2012: 141-157

• N. Razakarison, M. Carlsson, N. Beldiceanu, H. Simonis:
GAC for a Linear Inequality and an Atleast Constraint with
an Application to Learning Simple Polynomials. SOCS
2013

• N. Beldiceanu, G. Ifrim, A. Lenoir, H. Simonis: Describing
and Generating Solutions for the EDF Unit Commitment
Problem with the ModelSeeker. CP 2013: 733-748

Insight Centre for Data Analytics Slide 27PTHG-17

	Background
	Part I: Learning global constraint Models from Sample Solutions
	Part II: Generalizing Problem Parameters
	Part III: Industrial Case Study

