

The ModelSeeker - Learning Structured Constraint Models from Example Solutions

Helmut Simonis

Progress Towards the Holy Grail Workshop, CP 2017

Joint work with...

- Nicolas Beldiceanu, TASC team (CNRS/INRIA), IMT Atlantique, France
- Contributions by
 - Georgiana Ifrim, Insight UCD, Ireland
 - Arnaud Lenoir, EDF Research, France
 - Jean-Yves Lucas, EDF Research, France
 - Mats Carlsson, SICS, Sweden
 - Naina Razakarison, ENS Cachan, France
- Special thanks for examples due to
 - Hakan Kjellerstrand, Sweden

Outline

Background

Part I: Learning global constraint Models from Sample Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

In Pursuit of the Holy Grail

- “Constraint Programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it.” [E. Freuder]
- Why do we have to specify the problem? The computer should at least help us to do this.

What is New?

- Exploit regular structure of many constraint problems
- Global Constraint Catalog provides repository of constraints used in systems
- Provides appropriate bias for learning models
- Use meta-data describing key properties of global constraints
- Use logic programming to provide flexible environment

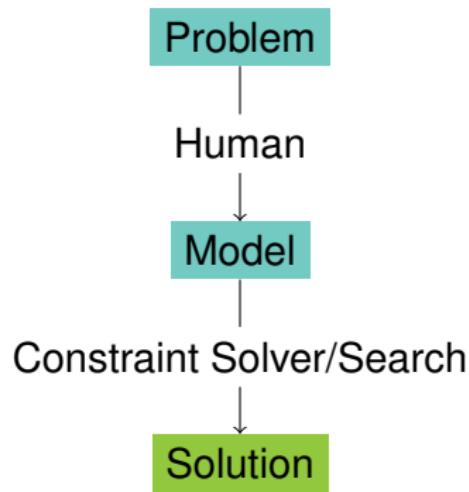
Is this different?

- Constraint Acquisition
 - Version space learning
 - Learning binary constraints
 - Asking many, many questions
 - Even if query complexity is optimal
- Inductive Logic Programming
 - Generate size independent models
 - Does not understand global constraints

Structure of Talk

- Learning models from solutions of fixed size
- How to generalize models by learning size parameters
- Industrial case study (EDF generator profiles)

Basic Process



Dual Role of Model

- Allows Human to Express Problem
 - Close to Problem Domain
 - Constraints as Abstractions
- Allows Solver to Execute
 - Variables as Communication Mechanism
 - Constraints as Algorithms

Global Constraint Catalog

- Collection of global constraints described in systems (Beldiceanu, Carlsson from 1999)
- Human and machine readable format
- Describe properties and relations between constraints
- Currently 443 constraints on 2712 pages
- 50000 lines of Prolog description

Outline

Background

Part I: Learning global constraint Models from Sample Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

Constraint exam (*Polytechnique 2011*)

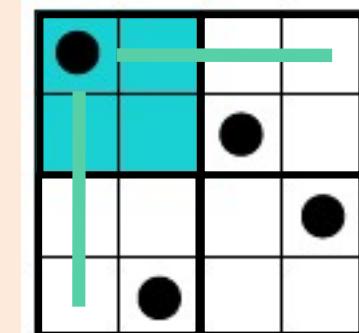
ORIGINAL QUESTION (*in French*)

On veut placer n samouraïs sur une grille $n \times n$, de sorte qu'ils ne puissent pas s'attaquer. La situation est un peu différente de celle des n reines. En effet, nous avons la promesse que $n = m^2$ pour un entier $m \geq 2$, et que la grille consiste en n carrés élémentaires de taille $m \times m$, voir figure 1. Deux samouraïs peuvent s'attaquer s'ils sont placés soit dans la même colonne, soit dans la même ligne, soit dans le même carré élémentaire.

<http://www.enseignement.polytechnique.fr/informatique/INF580/exams/>

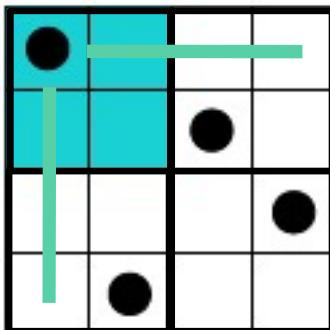
C. Durr

AN EXAMPLE



n Samuraïs: model

sample



3 0 2 1

model

J	Scheme	Ref	Trans	Constraint
1	vector(4)	2241	id	alldifferent_consecutive_values*1
2	scheme(4,2,2,1,2)	2240	id	alldifferent_interval(2)*2
3	pan_diagonal(4,2,0)	2239	id	alldifferent_interval(2)*2

Constraints for Problem 4 Samurai

$3^1 \ 0^2 \ 2^3 \ 1^4$

alldifferent_consecutive_values*1

$3^1 \ 0^2 \ 2^3 \ 1^4$

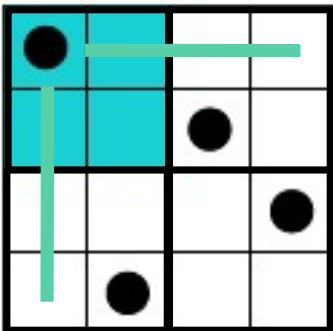
alldifferent_interval(2)*2

$3^1 \ 0^2 \ 2^3 \ 1^4$

alldifferent_interval(2)*2

n Samuraïs: model

samples



3 0 2 1

0 2 1 3

.....

model

J	Scheme	Ref	Trans	Constraint
1	vector(4)	2241	id	alldifferent_consecutive_values*1
2	scheme(4,2,2,1,2)	2240	id	alldifferent_interval(2)*2
3	pan_diagonal(4,2,0)	2239	id	alldifferent_interval(2)*2

Constraints for Problem 4 Samurais

$3^1 \ 0^2 \ 2^3 \ 1^4$

alldifferent_consecutive_values*1

$3^1 \ 0^2 \ 2^3 \ 1^4$

alldifferent_interval(2)*2

Eliminated if we
provide more samples

$3^1 \ 0^2 \ 2^3 \ 1^4$

alldifferent_interval(2)*2

n Samuraïs model (two conjunctions of similar constraints)

 { alldifferent_consecutive_values(<V₁, V₂, V₃, V₄>)

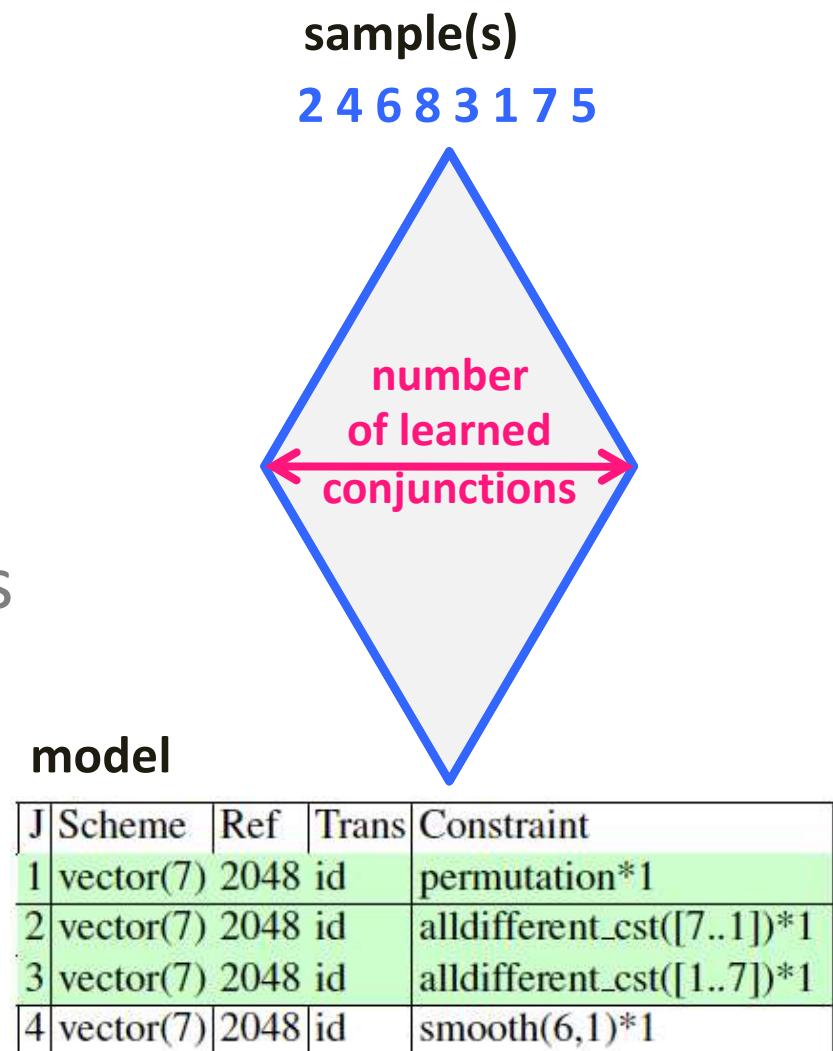
 { alldifferent_interval(<V₁, V₂>, 2)
alldifferent_interval(<V₃, V₄>, 2)

reformulation

$$V_1 = 2 * Q_1 + R_1 \quad (0 \leq R_1 < 2)$$
$$V_2 = 2 * Q_2 + R_2 \quad (0 \leq R_2 < 2)$$
$$\text{alldifferent}(<Q_1, Q_2>)$$

Workflow of the learning procedure (from samples to program)

- Transformations
- Partition generators
- Arguments creation
- Constraint seeker
- Domain creation
- Link between object attributes
- **Dominance check (crucial)**
- Trivial suppression
- Code generation
(catalog syntax, FlatZinc)



Points to remember

- Learning constraint models from positive examples
- Start with **vector** of values
- Group into **regular pattern**
- Find constraint pattern that apply to group elements
- Using ***Constraint Seeker*** for *Global Constraint Catalog*
- Works for **highly structured** problems

User oriented **input** format

Ideally, starts from the format used in books, on the web
for presenting the solution of a problem.
*(there may be **more than one** way)*

Very often solutions are represented as
one (or several) **tables, boards, grids, ...**,
with (sometime) extra information (**hints, parameters**)

We start from that idea

Input format: flat sequence of integers

2 4 6 8 3 1 7 5

(positions in the different columns, *start from 1*)

1 3 5 7 2 0 6 4

(positions in the different columns, *start from 0*)

2 12 22 32 35 41 55 61

(index of cells, *start from 1, ordered*)

22 12 55 61 32 35 2 41

(index of cells, *start from 1, not ordered*)

1 2 2 4 3 6 4 8 5 3 6 1 7 7 8 5

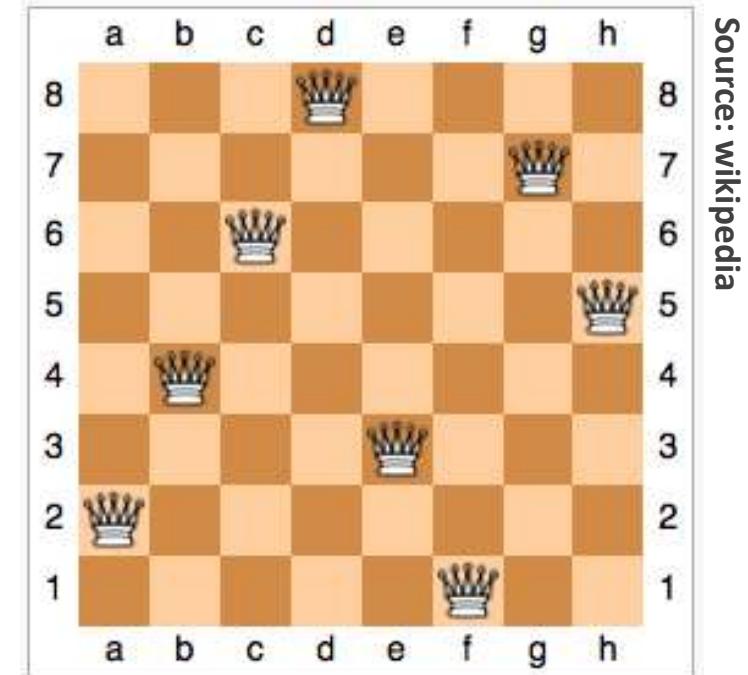
(coordinates of cells, *start from 1, ordered*)

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

(flat 0/1 matrix, 1 for *occupied cells*)

different representations
for the same solution



car sequencing	0	1	0	1	1	0
0	1	0	0	1	0	0
1	0	0	0	0	1	0
5	1	1	0	0	0	0
2	0	1	0	0	0	1
4	1	0	1	0	0	0
3	0	1	0	1	0	0
3	0	1	0	1	0	0
4	1	0	1	0	0	0
2	0	1	0	0	1	0
5	1	1	0	0	0	0
-	[1,2]	[2,3]	[1,3]	[2,5]	[1,5]	

input format: parameters

Integrated in the sample:
automatically extracted by
transformations

loggraphe	0	1	0	1	0	0	0	1	0	1	[1,1,1,1]
	1	1	0	1	1	1	1	0	0	0	[2,4]
	0	1	1	1	1	1	1	1	0	0	[7]
	0	0	0	1	1	1	1	1	1	0	[6]
	0	1	1	0	0	0	0	1	1	1	[2,3]
	1	0	0	0	1	0	1	0	1	0	[1,1,1,1]
	1	0	1	1	1	0	1	0	0	0	[1,3,1]
	1	0	0	0	1	0	0	1	0	1	[1,1,1,1]
	1	0	0	1	0	1	0	0	1	0	[1,1,1,1]
	0	0	0	0	0	1	1	0	0	0	[2]
	[1,4]	[3,1]	[1,1,1]	[4,1,1]	[3,3]	[3,2]	[3,2,1]	[1,3,1]	[3,1]	[1,1,1]	-

Transformations

- Extract **substructures** from samples
 - Extracting **overlapping grids** from **irregular shapes**
 - Distinguish **main grid** from **hints on column and/or rows**
- Derive **new samples** from samples
 - Build **triangular differences table**
 - Take **sign** and/or **absolute value**
- Handle **multiple input formats** (*in a transparent way*)
 - **Bijection**
 - **Tour/Path**
 - **Domination in graphs**

Transformations, example 1

(Extracting overlapping grids from irregular shapes)

IDEA

Cover the non-empty space by the **minimum** number of rectangles in such a way that the **maximum intersection between any pairs of rectangles** is **minimized**.

use a constraint program

Flower Sudoku

-	-	-	-	-	-	3	6	1	5	4	2	-	-	-	-	-
-	-	-	-	-	-	5	2	4	3	6	1	-	-	-	-	-
-	-	-	-	-	-	1	4	6	2	3	5	-	-	-	-	-
-	-	4	6	3	1	2	5	3	4	1	6	4	3	2	5	-
-	-	1	2	5	4	6	3	5	1	2	4	5	6	3	1	-
-	-	3	5	6	2	4	1	2	6	5	3	1	2	6	4	-
-	-	2	4	1	3	5	6	-	-	6	5	3	1	4	2	-
-	-	5	3	4	6	1	2	-	-	4	2	6	5	1	3	-
4	5	3	6	1	2	5	3	4	-	-	3	1	2	4	5	6
1	3	5	2	6	4	-	-	-	-	-	3	6	2	4	1	5
2	6	4	1	5	3	-	-	-	-	-	1	2	3	5	4	6
5	2	1	4	3	6	-	-	-	-	-	5	3	1	2	6	4
3	4	6	5	2	1	-	-	-	-	-	6	1	4	3	5	2
6	1	2	3	4	5	2	1	6	-	-	6	3	1	2	4	5
-	-	-	1	6	4	3	2	5	-	-	4	5	6	3	2	1
-	-	-	2	5	6	1	4	3	-	-	2	1	5	4	6	3
-	-	-	4	3	2	6	5	1	4	6	3	2	4	1	5	6
-	-	-	6	2	1	5	3	4	2	5	1	6	2	5	3	4
-	-	-	5	1	3	4	6	2	3	1	5	4	3	6	1	2
-	-	-	-	-	-	4	5	6	3	2	1	-	-	-	-	-
-	-	-	-	-	-	2	3	1	4	6	5	-	-	-	-	-
-	-	-	-	-	-	1	6	5	2	4	3	-	-	-	-	-

Transformations, Example 2

(tours/paths)

Euler first example on open knight's tour;
the numbers mark the order of the cells
the knight visit

Numberlink (Nikoli)
all cells belonging to a same path
are labelled by the same number

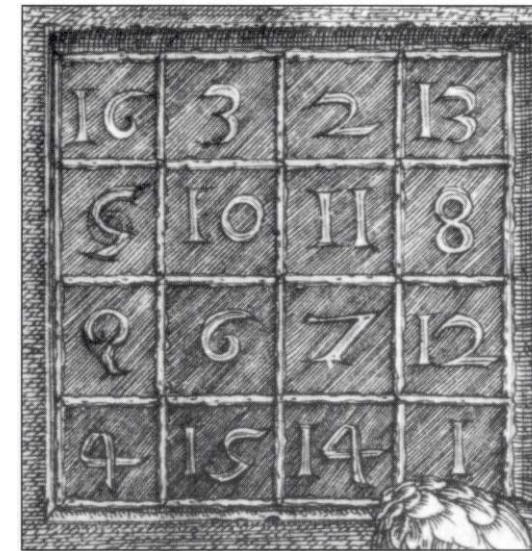
32	13	54	27	56	23	...
63	52	31	24	29	26	...
14	33	2	51	16	35	...
1	64	15	34	3	50	...

0	272	220	43	53	333	363	...
270	222	41	55	212	51	331	...
224	38	57	210	277	214	48	...
36	60	207	280	386	275	216	...
334	362	105	182	84	388	273	...
52	332	364	103	1	271	221	...

2	2	2	2	2	2	2	2	2
2	7	7	7	7	7	7	1	2
2	7	1	1	1	1	1	1	2
2	7	6	6	6	6	6	2	2
2	7	7	5	5	5	6	6	6

Convert to **successor representation** and
check that the underlying graph is **regular**

Magic Square Example



Albrecht Dürer: Melencolia I (1514)

Partition generators

Structured groups of variables passed to a conjunction of identical constraints

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

Partition generators

Structured groups of variables passed to a conjunction of identical constraints

16 ¹	3 ²	2 ³	13 ⁴
5 ⁵	10 ⁶	11 ⁷	8 ⁸
9 ⁹	6 ¹⁰	7 ¹¹	12 ¹²
4 ¹³	15 ¹⁴	14 ¹⁵	1 ¹⁶

sum_ctr(34)*4

16 ¹	3 ²	2 ³	13 ⁴
5 ⁵	10 ⁶	11 ⁷	8 ⁸
9 ⁹	6 ¹⁰	7 ¹¹	12 ¹²
4 ¹³	15 ¹⁴	14 ¹⁵	1 ¹⁶

sum_ctr(34)*4

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16 ¹	3 ²	2 ³	13 ⁴
5 ⁵	10 ⁶	11 ⁷	8 ⁸
9 ⁹	6 ¹⁰	7 ¹¹	12 ¹²
4 ¹³	15 ¹⁴	14 ¹⁵	1 ¹⁶

strictly_decreasing*2
sum_ctr(34)*2

Partition generators

Structured groups of variables passed to
a conjunction of **identical** constraints

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

Partition generators

Structured groups of variables passed to
a conjunction of **identical** constraints

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_ctr(34)*4

surprise

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_squares_ctr(358)*2

surprise

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_squares_ctr(390)*2

surprise

Partition generators

Structured groups of variables passed to
a conjunction of **identical** constraints

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

Partition generators

Structured groups of variables passed to
a conjunction of **identical** constraints

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_ctr(34)*4

surprise

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_squares_ctr(748)*2

surprise

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

alldifferent_interval(2)*8

Partition generators (end)

Structured groups of variables passed to
a conjunction of **identical** constraints

16^1	3^2	2^3	13^4
5^5	10^6	11^7	8^8
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

`symmetric_alldifferent_loop([1..16])*1`

surprise

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

$\text{symmetric_alldiff_loop}(<\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n>)$

$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a permutation
of order 2 (*an involution*)

$\mathbf{x}_i = \mathbf{j} \Leftrightarrow \mathbf{x}_j = \mathbf{i}$ (*i may be equal to j*)

Arguments creation + Constraint seeker

- Arguments creation
 - Use partition generators
 - Add arguments
 - as parameters (*extracted from sample*)
 - through **functional dependency**
- Constraint seeker (CP 2011)
 - Only **typical use**

EXAMPLE

`atleast(N, VARIABLES, VALUE)`

Typical

$N > 0$

$N < |VARIABLES|$

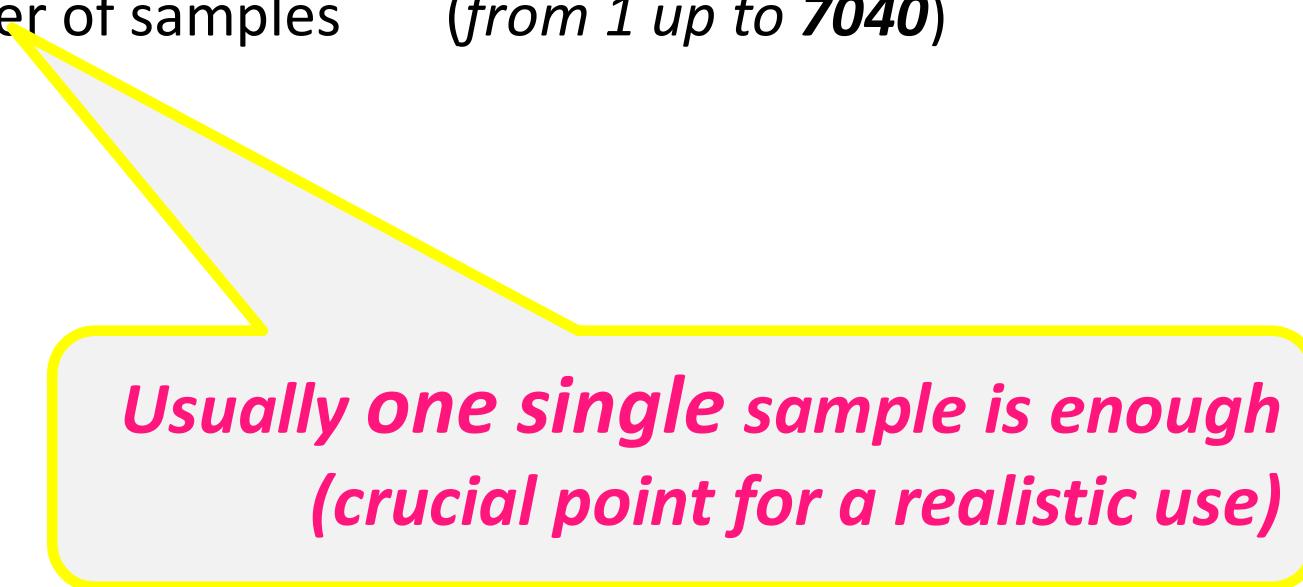
$|VARIABLES| > 1$

Dominance check

- Certain conjunctions of constraints are dominated by others (*crucial to eliminate them to restrict output*)
- Weaker than full implication
- Use:
 - **Implication** and **conditional implication** (*given in the catalog*)
 - Sum of squares constraint equivalent to sum (if 0/1 variables)
 - **Properties** of constraints arguments (*given in the catalog*)
 - **Contractible** (*alldifferent*)
 - **Extensible** (*atleast*)
 - **Aggregation** (*among*)
 - **Ad hoc conditional implication** (*about 10 currently*)

Evaluation: Problem Sizes

- **350** instances considered
 - Special thanks to **Håkan Kjellerstrand**
 - Sample sizes *(from 4 up to 6551)*
 - Number of samples *(from 1 up to 7040)*



*Usually one single sample is enough
(crucial point for a realistic use)*

A fair variety of problem types

- No attack on a board ----- (e.g. *queen, amazon, samurai*)
- Domination on a graph ----- (e.g. *queen, knight on a board, on a cube*)
- Tour/path on a graph ----- (e.g. *knight, leaper, number link*)
- Balanced block design ----- (e.g. *BIBD, Steiner, Kirkman*)
- Latin squares ----- (e.g. *standard, self-symmetric, orthogonal*)
- Sudoku ----- (e.g. *consecutive, samurai, anti diagonal, twin*)
- Sport scheduling ----- (e.g. *ACC Basketball, Bundesliga, Whist*)
- Scheduling ----- (e.g. *Job Shop*)
- Packing ----- (e.g. *squared squares, pallet loading, Conway 3d*)
- Magic/bimagic ----- (e.g. *sequence, squares, cubes*)
- Miscellaneous ----- (e.g. *tomography, progressive party, car sequencing*)

Results: Some Stats

Time	: from 20 ms up to 5 min.
Calls to the seeker	: up to 5,044 calls
Calls to Constraints	: up to 1,100,000 calls
Found conjunctions	: up to 2207 (<i>before dominance check</i>)
# constraints used	: 69(130) out of 399 constraints in the catalog

Conclusion

- Learning constraint models from **very small sets** of positive examples
- Start with **vector** of values
- Group into **regular pattern**
- Find constraint pattern that apply on group elements
- Using **Constraint Seeker** for *Global Constraint Catalog*
- Works for **highly structured** problems

Remarks

- Having many constraints allows to get **precise** models
- Filtering not used at all (*but need **efficient checkers***)
- AI approach to learning (**knowledge base**/*no statistics*)
- Master student level (*maybe*)
- Of course the program does not invent new constraints, new generators, new transformations,
- Should provide an interface for presenting global constraint to normal users (*natural language + first order logical formulae for many constraints*).

Extensive use of meta data describing constraints (e.g., typical case, functional dependency, imply, contractibility, checker, ...)

Why does it work at all?

- Searching for **conjunction of similar global constraints** is the correct level of abstraction (finding structured models)
- Learning at the level of a modelling language (OPL, Zinc, Essence) is too hard, as the **language is too expressive**
- Learning inequalities (MIP) or clauses (SAT) is **too generic**

Global constraints are usually introduced for filtering, but they are key modelling constructs, and allow effective learning of models

Outline

Background

Part I: Learning global constraint Models from Sample Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

From Fixed Size Samples to Generic Models

- Work in progress
- Combine models found for multiple problem sizes
- Replace size specific parameters with size dependent functions
- Suggest potential solutions from (very) few samples

Example: Sudoku 9x9

Partition sample in different ways:

1 ¹	2 ²	6 ³	4 ⁴	3 ⁵	7 ⁶	9 ⁷	5 ⁸	8 ⁹
8 ¹⁰	9 ¹¹	5 ¹²	6 ¹³	2 ¹⁴	1 ¹⁵	4 ¹⁶	7 ¹⁷	3 ¹⁸
3 ¹⁹	7 ²⁰	4 ²¹	9 ²²	8 ²³	5 ²⁴	1 ²⁵	2 ²⁶	6 ²⁷
4 ²⁸	5 ²⁹	7 ³⁰	1 ³¹	9 ³²	3 ³³	8 ³⁴	6 ³⁵	2 ³⁶
9 ³⁷	8 ³⁸	3 ³⁹	2 ⁴⁰	4 ⁴¹	6 ⁴²	5 ⁴³	1 ⁴⁴	7 ⁴⁵
6 ⁴⁶	1 ⁴⁷	2 ⁴⁸	5 ⁴⁹	7 ⁵⁰	8 ⁵¹	3 ⁵²	9 ⁵³	4 ⁵⁴
2 ⁵⁵	6 ⁵⁶	9 ⁵⁷	3 ⁵⁸	1 ⁵⁹	4 ⁶⁰	7 ⁶¹	8 ⁶²	5 ⁶³
5 ⁶⁴	4 ⁶⁵	8 ⁶⁶	7 ⁶⁷	6 ⁶⁸	9 ⁶⁹	2 ⁷⁰	3 ⁷¹	1 ⁷²
7 ⁷³	3 ⁷⁴	1 ⁷⁵	8 ⁷⁶	5 ⁷⁷	2 ⁷⁸	6 ⁷⁹	4 ⁸⁰	9 ⁸¹

1 ¹	2 ²	6 ³	4 ⁴	3 ⁵	7 ⁶	9 ⁷	5 ⁸	8 ⁹
8 ¹⁰	9 ¹¹	5 ¹²	6 ¹³	2 ¹⁴	1 ¹⁵	4 ¹⁶	7 ¹⁷	3 ¹⁸
3 ¹⁹	7 ²⁰	4 ²¹	9 ²²	8 ²³	5 ²⁴	1 ²⁵	2 ²⁶	6 ²⁷
4 ²⁸	5 ²⁹	7 ³⁰	1 ³¹	9 ³²	3 ³³	8 ³⁴	6 ³⁵	2 ³⁶
9 ³⁷	8 ³⁸	3 ³⁹	2 ⁴⁰	4 ⁴¹	6 ⁴²	5 ⁴³	1 ⁴⁴	7 ⁴⁵
6 ⁴⁶	1 ⁴⁷	2 ⁴⁸	5 ⁴⁹	7 ⁵⁰	8 ⁵¹	3 ⁵²	9 ⁵³	4 ⁵⁴
2 ⁵⁵	6 ⁵⁶	9 ⁵⁷	3 ⁵⁸	1 ⁵⁹	4 ⁶⁰	7 ⁶¹	8 ⁶²	5 ⁶³
5 ⁶⁴	4 ⁶⁵	8 ⁶⁶	7 ⁶⁷	6 ⁶⁸	9 ⁶⁹	2 ⁷⁰	3 ⁷¹	1 ⁷²
7 ⁷³	3 ⁷⁴	1 ⁷⁵	8 ⁷⁶	5 ⁷⁷	2 ⁷⁸	6 ⁷⁹	4 ⁸⁰	9 ⁸¹

1 ¹	2 ²	6 ³	4 ⁴	3 ⁵	7 ⁶	9 ⁷	5 ⁸	8 ⁹
8 ¹⁰	9 ¹¹	5 ¹²	6 ¹³	2 ¹⁴	1 ¹⁵	4 ¹⁶	7 ¹⁷	3 ¹⁸
3 ¹⁹	7 ²⁰	4 ²¹	9 ²²	8 ²³	5 ²⁴	1 ²⁵	2 ²⁶	6 ²⁷
4 ²⁸	5 ²⁹	7 ³⁰	1 ³¹	9 ³²	3 ³³	8 ³⁴	6 ³⁵	2 ³⁶
9 ³⁷	8 ³⁸	3 ³⁹	2 ⁴⁰	4 ⁴¹	6 ⁴²	5 ⁴³	1 ⁴⁴	7 ⁴⁵
6 ⁴⁶	1 ⁴⁷	2 ⁴⁸	5 ⁴⁹	7 ⁵⁰	8 ⁵¹	3 ⁵²	9 ⁵³	4 ⁵⁴
2 ⁵⁵	6 ⁵⁶	9 ⁵⁷	3 ⁵⁸	1 ⁵⁹	4 ⁶⁰	7 ⁶¹	8 ⁶²	5 ⁶³
5 ⁶⁴	4 ⁶⁵	8 ⁶⁶	7 ⁶⁷	6 ⁶⁸	9 ⁶⁹	2 ⁷⁰	3 ⁷¹	1 ⁷²
7 ⁷³	3 ⁷⁴	1 ⁷⁵	8 ⁷⁶	5 ⁷⁷	2 ⁷⁸	6 ⁷⁹	4 ⁸⁰	9 ⁸¹

Generated Model (compact representation):

scheme(81,9,9,9,1) permutation*9

scheme(81,9,9,3,3) permutation*9

scheme(81,9,9,1,9) permutation*9

Example: Sudoku 9x9,16x16,25x25

Sudoku 9x9	scheme(81,9,9,9,1)	permutation*9
	scheme(81,9,9,3,3)	permutation*9
	scheme(81,9,9,1,9)	permutation*9
Sudoku 16x16	scheme(256,16,16,16,1)	permutation*16
	scheme(256,16,16,4,4)	permutation*16
	scheme(256,16,16,1,16)	permutation*16
	scheme(625,25,25,25,1)	permutation*25
Sudoku 25x25	scheme(625,25,25,5,5)	permutation*25
	scheme(625,25,25,1,25)	permutation*25

Next Step: Generalize Models

- Find parametrized models
- One model for all problem sizes
- Parameters expressed as polynomials of one or multiple parameters
- Assumptions
 - Very few (1-3) samples
 - Highly structured problems lead to simple polynomials
- Learning polynomials is expressed as a constraint problem

Generic Model: Sudoku $n \times n$

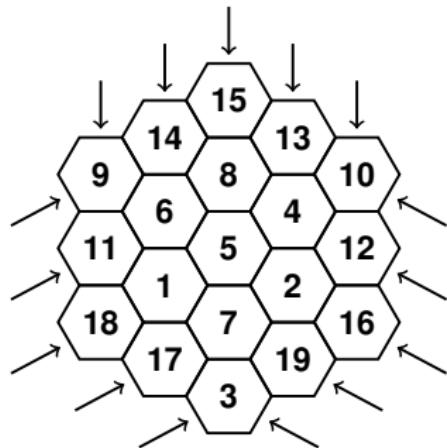
From multiple specific models:

Sudoku 9x9	scheme(81,9,9,9,1)	permutation*9
	scheme(81,9,9,3,3)	permutation*9
	scheme(81,9,9,1,9)	permutation*9
Sudoku 16x16	scheme(256,16,16,16,1)	permutation*16
	scheme(256,16,16,4,4)	permutation*16
	scheme(256,16,16,1,16)	permutation*16
Sudoku 25x25	scheme(625,25,25,25,1)	permutation*25
	scheme(625,25,25,5,5)	permutation*25
	scheme(625,25,25,1,25)	permutation*25

To one generic model:

scheme($n^4, n^2, n^2, n^2, 1$)	permutation* n^2
scheme(n^4, n^2, n^2, n, n)	permutation* n^2
scheme($n^4, n^2, n^2, 1, n^2$)	permutation* n^2

More Complex Example: Magic Hexagon



5 samples, independent parameters $x_1 = [3, 4, 5, 6, 7]$, $x_2 = [1, 3, 6, 21, 2]$, dependent parameter $y_1 = [190, 777, 2196, 6006, 8255]$

$$2y_{1k} = 9x_{1k}^4 + 6x_{1k}^2x_{2k} - 18x_{1k}^3 - 6x_{1k}x_{2k} + 12x_{1k}^2 + 2x_{2k} - 3x_{1k}$$

Outline

Background

Part I: Learning global constraint Models from Sample Solutions

Part II: Generalizing Problem Parameters

Part III: Industrial Case Study

Take away message

- Apply ModelSeeker Approach to problem from EDF
- Find constraints in Unit Commitment Problem
- Modelled with constraints having functional dependencies
- Generate sample output similar to input data

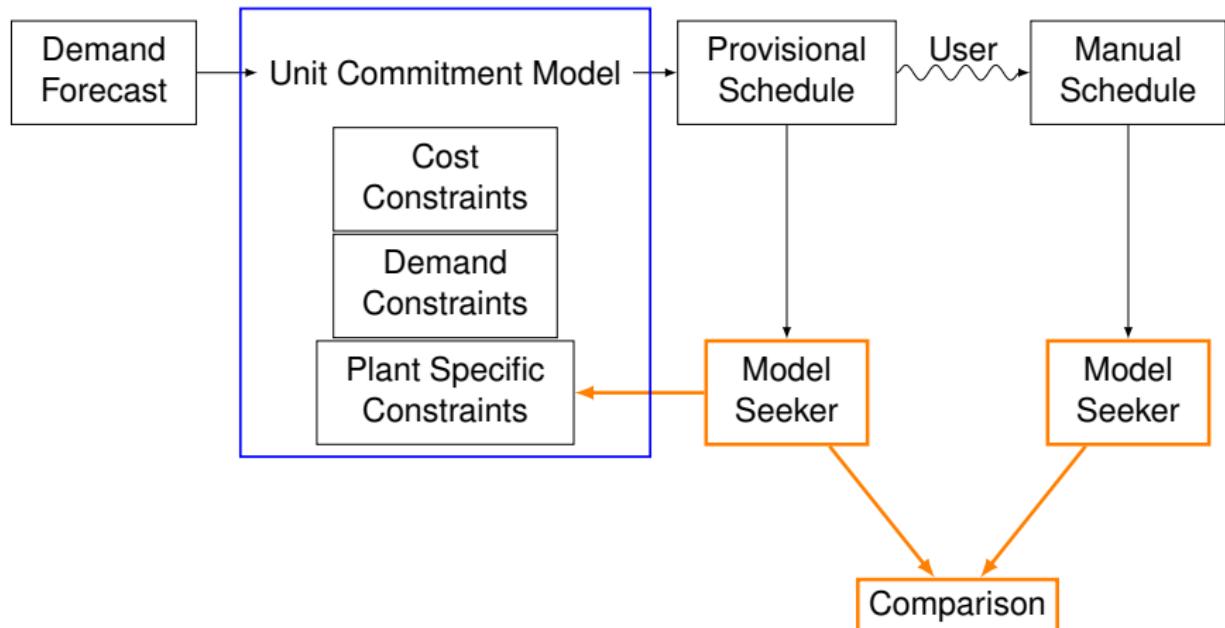
EDF Unit Commitment Model (UCM)

- Planning the use of all power stations in France for next two days
 - Run every day
- Based on demand prediction, minimizing production cost
- Each plant is defined by its own constraints
- Very large optimization model (MIP/Lagrangian Relaxation)
- Execution time critical to process

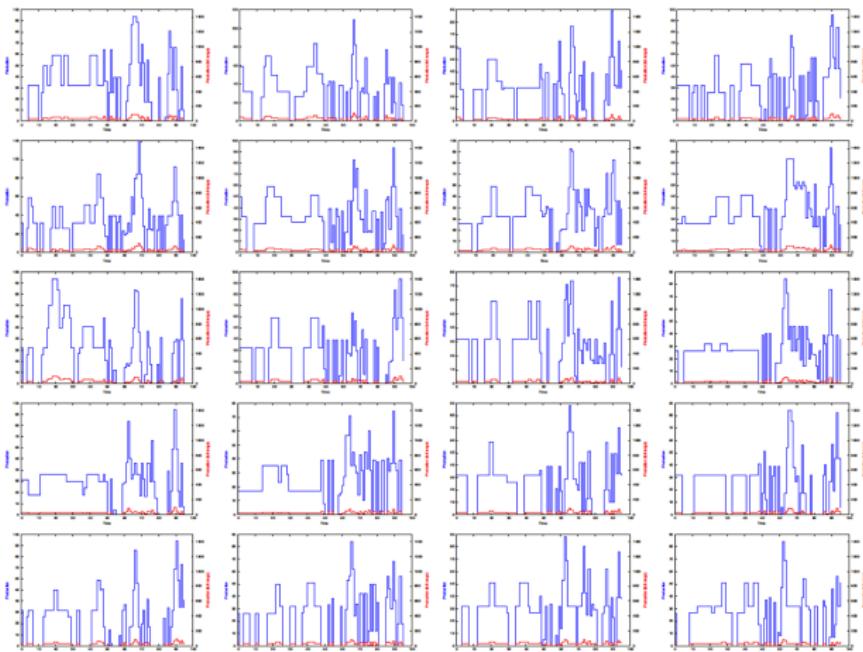
Problem: Identify Plant Specific Constraints

- Large part of model are plant specific constraints
- This determines how a plant can be scheduled
- Big differences between different types of plants (nuclear, thermal, hydro)
- Different parameter values for each plant (even if same type)
- Ignore at the moment:
 - Matching demand (+ handling of reserves)
 - Minimizing cost
 - Seasonal/weather effects (especially hydro)

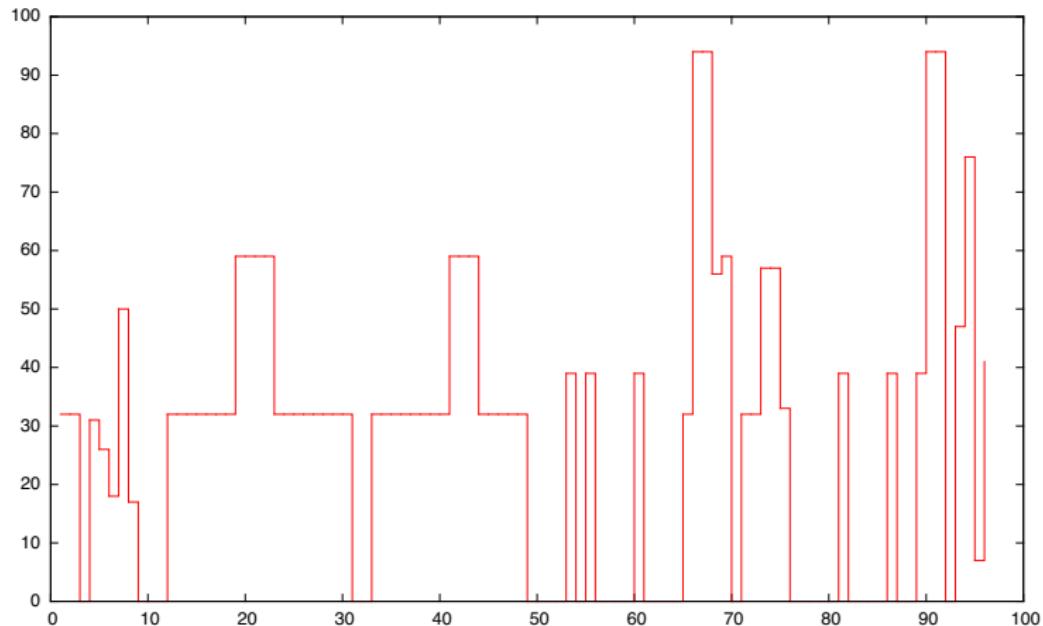
Schema



Example: From this...



... to this (Generated Profile)



Summary

- Learning constraint models from few, positive examples
- Generalize models to arbitrary size (work in progress)
- Specific problem domain leads to more specific model generator

Bibliography

- N. Beldiceanu, H. Simonis: A Constraint Seeker: Finding and Ranking Global Constraints from Examples. CP 2011: 12-26
- N. Beldiceanu, H. Simonis: A Model Seeker: Extracting Global Constraint Models from Positive Examples. CP 2012: 141-157
- N. Razakarison, M. Carlsson, N. Beldiceanu, H. Simonis: GAC for a Linear Inequality and an Atleast Constraint with an Application to Learning Simple Polynomials. SOCS 2013
- N. Beldiceanu, G. Ifrim, A. Lenoir, H. Simonis: Describing and Generating Solutions for the EDF Unit Commitment Problem with the ModelSeeker. CP 2013: 733-748