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Outline

Background
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In Pursuit of the Holy Grail

e “Constraint Programming represents one of the closest
approaches computer science has yet made to the Holy
Grail of programming: the user states the problem, the
computer solves it.” [E. Freuder]

e Why do we have to specify the problem? The computer
should at least help us to do this.

entre for Data Analytics PTHG-17 Slide 4




What is New?

e Exploit regular structure of many constraint problems

e Global Constraint Catalog provides repository of
constraints used in systems

e Provides appropriate bias for learning models

e Use meta-data describing key properties of global
constraints

e Use logic programming to provide flexible environment
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Is this different?

e Constraint Aquisition
e Version space learning
¢ Learning binary constraints
¢ Asking many, many questions
Even if query complexity is optimal
e Inductive Logic Programming
¢ Generate size independent models
e Does not understand global constraints
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Structure of Talk

e Learning models from solutions of fixed size
e How to generalize models by learning size parameters
e Industrial case study (EDF generator profiles)
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Basic Process

Problem

Human

|

Model

Constraint Solver/Search

|

Solution
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Dual Role of Model

e Allows Human to Express Problem
e Close to Problem Domain
o Constraints as Abstractions

e Allows Solver to Execute

e Variables as Communication Mechanism
¢ Constraints as Algorithms
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Global Constraint Catalog

e Collection of global constraints described in systems
(Beldiceanu, Carlsson from 1999)

Human and machine readable format

Describe properties and relations between constraints

Currently 443 constraints on 2712 pages
50000 lines of Prolog description

WV
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Outline

Part I: Learning global constraint Models from Sample
Solutions
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Constraint exam (Polytechnique 2011)

ORIGINAL QUESTION (in French)

On veut placer n samourais sur une grille n x n, de sorte qu’ils ne puissent pas s’attaquer.
La situation est un peu différente de celle des n reines. En effet, nous avons la promesse que
n = m? pour un entier m > 2, et que la grille consiste en n carrés élémentaires de taille
m x m, voir figure 1. Deux samourals peuvent s’attaquer s’ils sont placés soit dans la méme
colonne, soit dans la méme ligne, soit dans le méme carré élémentaire.

http://www.enseignement.polytechnique.fr/informatique/INF580/exams/ C. Durr

AN EXAMPLE




n Samurais: model

model
J|Scheme IRef |Trans|Constraint
1 vector(4) 2241 id alldifferent_consecutive_values*1

2 scheme(4.,2,2.1,2) 2240 id alldifferent_interval(2)*2

3 pan_diagonal(4.2.0) 2239 id  alldifferent_interval(2)*2

Constraints for Problem 4 Samurai

alldifferent_consecutive_values*1

- 93 14|

alldifferent_interval(2)*2

alldifferent_interval(2)*2




n Samurais: model

samples model
& J|Scheme IRef |Trans|Constraint
1 vector(4) 2241 id alldifferent_consecutive_values*1

2 scheme(4.,2,2.1,2) 2240 id alldifferent_interval(2)*2

3 pan_diagonal(4.2.0) 2239 id  alldifferent_interval(2)*2

Constraints for Problem 4 Samurai

alldifferent_consecutive_values*1

- 93 14|

alldifferent_interval(2)*2

Eliminated if we
provide more samples

arval(2)*2




n Samurais model
(two conjunctions of similar constraints)

—

_ < alldifferent_consecutive_values(<V,,V,,V3,V,>)

==a

" alldifferent_interval(<V,,V,>, 2)

3 a4 i
il o reformulation

alldifferent_interval(<V,,V,>, 2
_ - (<V3Va>, 2) V,=2*Q,+R, (0 < R, <2)

V,=2*Q,+R, (0 <R,<2)
alldifferent(<Q,,Q,>)




Workflow of the learning procedure
(from samples to program)

sample(s)
Transformations 24683175

Partition generators

Arguments creation

Constraint seeker

Domain creation

Link between object attributes
Dominance check (crucial)

Trivial suppression model

number
of learned
conjunctions

. ‘ Scheme |Ref |Trans Constraint
Code generation

vector(7) 2048 1d permutation® 1
(Catalag Syntaxl FlatZInC) vector(7) 2048 id alldifferent_cst([1..7])*1

J
1
2|vector(7) 2048 id alldifferent_cst([7..1])*1
3
4

vector(7)|2048|id smooth(6,1)*1




Points to remember

Learning constraint models from positive examples
Start with vector of values

Group into regular pattern

Find constraint pattern that apply to group elements
Using Constraint Seeker for Global Constraint Catalog
Works for highly structured problems



User oriented input format

Ideally, starts from the format used in books, on the web
for presenting the solution of a problem.
(there may be more than one way)

Very often solutions are represented as
one (or several) tables, boards, grids, ...,
with (sometime) extra information (hints, parameters)

We start from that idea



Input format: flat sequence of integers

different representations

24683175 )
for the same solution

(positions in the different columns, start from 1)

13572064

(positions in the different columns, start from 0)

212223235415561

(index of cells, start from 1, ordered)

eipadpjim :aa.mos"

221255613235241

(index of cells, start from 1, not ordered)

= M W A~ o ;d =~

1224364853617785

(coordinates of cells, start from 1, ordered)

010000000001000000000100000000010010

0000100000000000001000001000
(flat 0/1 matrix, 1 for occupied cells)



input format
parameters

automatically extracted by
transformations

Integrated in the sample:
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Transformations

e Extract substructures from samples
— Extracting overlapping grids from irregular shapes
— Distinguish main grid from hints on column and/or rows

* Derive new samples from samples
— Build triangular differences table
— Take sign and/or absolute value

 Handle multiple input formats (in a transparent way)
— Bijection
— Tour/Path
— Domination in graphs



Transformations, example 1
(Extracting overlapping grids from irreqular shapes)

Flower Sudoku
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Transformations, Example 2

(tours/paths)

Euler first example on open knight’s tour;
the numbers mark the order of the cells
the knight visit

Leaper graphs in Selected Papers
on Fun and Games [Knuth 2010]
the tour is given in base 9

(in order to highlight symmetries)

Numberlink (Nikoli)
all cells belonging to a same path
are labelled by the same number
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Magic Square

I e i

Albrecht Durer: Melencolia | (1514)




Structured groups of variables passed to
a conjunction of identical constraints

Partition generators

15 14 1 41 o 1 16

sample

16

3

13

10

11

6

12
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15

14




Partition generators

sample
Structured groups of variables passed to
: : . . : 16| 3| 2|13
a conjunction of identical constraints SOl 8
9] 6| 7[12
4[15(14] 1

el e AT 48
41'3 1514 1415 116
sum_ctr(34)*4

B 2 13t

ﬁiﬂ 1T {912
1 514 1 41- 5 1 16
sum_ctr(34)*4

strictly_decreasing*2
sum_ctr(34)*2



Partition generators

Structured groups of variables passed to

a conjunction of identical constraints
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Partition generators

sample
Structured groups of variables passed to
a conjunction of identical constraints 16| 3| 2|13
511011 8
91 6| 7|12
411514 1
10"
ﬁlﬂ- :12'1525
3 (5Nl 116 161] 32
sum_ctr(34)*4 i Mﬁ“
surprise ! 9 6 7 | 12 |
_413 1514'i 141:: 1lb 23 13-’-1
sum_squares_ctr(358)*2 TR
surprise 97 6 o 12
413 1514 1415 115

sum_squares_ctr(390)*2
surprise



Partition generators

Structured groups of variables passed to
a conjunction of identical constraints
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Partition generators

i sample
Structured groups of variables passed to
a conjunction of identical constraints 16| 3| 2|13
5|10(11] 8
91 6| 7|12
4

e 1514 1
5°0 1p° 11 &

oty 7 12
A13[ {514 1415 ilﬁ

sum_ctr(34)*4 52 108 117 88

il L 1

sum_squares_ctr(748)*2
surprise

2

5 10° 117 &
gﬂ- ﬁ.lﬂ 71-1 121«2
alldifferent_interval(2)*8




Partition generators (end)

Structured groups of variables passed to
a conjunction of identical constraints

symmetric_alldifferent_loop([1..16])*1

surprise

sample

16
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15

14




Arguments creation + Constraint seeker

* Arguments creation
— Use partition generators
— Add arguments

 as parameters (extracted from sample)
* through functional dependency

e Constraint seeker (CP 2011)

— Only typical use AL

atleast(N, VARIABLES, VALUE)
Typical N =0
N < |VARIABLES|
IVARTABLES| > 1



Dominance check

e Certain conjunctions of constraints are dominated by
others (crucial to eliminate them to restrict output)

* Weaker than full implication

* Use:
— Implication and conditional implication (given in the catalog)
* Sum of squares constraint equivalent to sum (if 0/1 variables)

— Properties of constraints arguments (given in the catalog)

* Contractible (alldifferent)
e Extensible (atleast)
* Aggregation (among)

— Ad hoc conditional implication (about 10 currently)



Evaluation: Problem Sizes

* 350 instances considered
— Special thanks to Hakan Kjellerstrand
— Sample sizes (from 4 up to 6551)
— Number of samples  (from 1 up to 7040)

Usually one single sample is enough
(crucial point for a realistic use)



A fair variety of problem types

No attack on a board ----------———-——————--- (e.g. queen, amazon, samurai’)
Domination on a graph --------- (e.g. queen, knight on a board, on a cube)
Tour/path on a graph ————- <o (e.g. knight, leaper, number link)
Balanced block design ----————-——ccmeeee . (e.g. BIBD, Steiner, Kirkman)
Latin squares ----—-—--—cememo- (e.g. standard, self-symmetric, orthogonal)
Sudoku —--ccemmee (e.g. consecutive, samurai, anti diagonal, twin)
Sport scheduling ------------------ (e.g. ACC Basketball, Bundesliga, Whist)
Scheduling - - oo (e.g. Job Shop)
Packing -—- - (e.g. squared squares, pallet loading, Conway 3d)
Magic/bimagic - (e.g. sequence, squares, cubes)

Miscellaneous —---__. (e.g. tomography, progressive party, car sequencing)



Results: Some Stats

Time

Calls to the seeker
Calls to Constraints
Found conjunctions
# constraints used

: from 20 ms up to 5 min.

: up to 5,044 calls

: up to 1,100,000 calls

: up to 2207 (before dominance check)

: 69(130) out of 399 constraints in the catalog



Conclusion

Learning constraint models from very small sets of
positive examples

Start with vector of values

Group into regular pattern

Find constraint pattern that apply on group elements
Using Constraint Seeker for Global Constraint Catalog
Works for highly structured problems



Remarks

* Having many constraints allows to get precise models
* Filtering not used at all (but need efficient checkers)

* Al approach to learning (knowledge base/no statistics)

* Master student level (maybe)

e Of course the program does not invent new constraints,
new generators, new transformations, ... .

* Should provide an interface for presenting global
constraint to normal users (natural language +
first order logical formulae for many constraints).

Extensive use of meta data describing constraints (e.g., typical case,
functional dependency, imply, contractibility, checker, ...)



Why does it work at all?

e Searching for conjunction of similar global
constraints is the correct level of abstraction
(finding structured models)

e Learning at the level of a modelling language

(OPL, Zinc, Essence) is too hard, as the language
Is too expressive

* Learning inequalities (MIP) or clauses (SAT) is too
generic

Global constraints are usually introduced for
filtering, but they are key modelling constructs,
and allow effective learning of models



Outline

Part IIl: Generalizing Problem Parameters
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From Fixed Size Samples to Generic Models

Work in progress
Combine models found for multiple problem sizes

Replace size specific parameters with size dependent
functions

htC entre for Data Analytics PTHG-17 SIERE]

Suggest potential solutions from (very) few samples




Example: Sudoku 9x9

Partition sample in different ways:

Generated Model (compact representation):
scheme(81,9,9,9,1) permutation®9
scheme(81,9,9,3,3) permutation®9
scheme(81,9,9,1,9) permutation®9
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Example: Sudoku 9x9,16x16,25x25

scheme(81,9,9,9,1) permutation*9
Sudoku 9x9 scheme(81,9,9,3,3) permutation®9
scheme(81,9,9,1,9) permutation®
scheme(256,16,16,16,1) permutation®16
Sudoku 16x16  scheme(256,16,16,4,4) permutation®16
scheme(256,16,16,1,16) permutation®*16
scheme(625,25,25,25,1) permutation®25
Sudoku 25x25  scheme(625,25,25,5,5) permutation®25
scheme(625,25,25,1,25) permutation®25
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Next Step: Generalize Models

Find parametrized models

One model for all problem sizes

Parameters expressed as polynomials of one or multiple
parameters

Assumptions

e Very few (1-3) samples
e Highly structured problems lead to simple polynomials

V.

Learning polynomials is expressed as a constraint
problem
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Generic Model: Sudoku n x n

From multiple specific models:

scheme(81,9,9,9,1) permutation®9
Sudoku 9x9 scheme(81,9,9,3,3) permutation*9
scheme(81,9,9,1,9) permutation®9

(
(
scheme(256,16,16,16,1)
Sudoku 16x16  scheme(256,16,16,4,4)
scheme(256,16,16,1,16)
scheme(625,25,25,25,1)
Sudoku 25x25  scheme(625,25,25,5,5)
scheme(625,25,25,1,25)

To one generic model:

permutation*16
permutation*16
permutation*16
permutation*25
permutation*25
permutation*25

scheme(n*,?,n?,n°,1) permutation*r?
scheme(n*,n?,n?,n,n) permutation*n?
scheme(n*,n?,n?,1,n?) permutation*r?

ntre for Data Analytics
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More Complex Example: Magic Hexagon

5 samples, independent para-
meters Xy = [3,4,5,6,7],
Xo = [1,3,6,21,2], de-
pendent parameter  y4 =
[190,777,2196,6006, 8255]
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Part llI: Industrial Case Study
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Take away message

Apply ModelSeeker Approach to problem from EDF
Find constraints in Unit Commitment Problem

Modelled with constraints having functional
dependencies

Generate sample output similar to input data
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EDF Unit Commitment Model (UCM)

e Planning the use of all power stations in France for next
two days

e Run every day
e Based on demand prediction, minimizing production cost
e Each plantis defined by its own constraints

e Very large optimization model (MIP/Lagrangian
Relaxation)

e Execution time critical to process

WV
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Problem: Identify Plant Specific Constraints

e Large part of model are plant specific constraints
¢ This determines how a plant can be scheduled

e Big differences between different types of plants
(nuclear, thermal, hydro)

e Different parameter values for each plant (even if same
type)

e Ignore at the moment:

e Matching demand (+ handling of reserves)
e Minimizing cost
¢ Seasonal/weather effects (especially hydro)
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Schema

Demand L unitc . Model -+ Provisional /\/Q?{a/rv Manual
Forecast nit Commitment Mode Schedule Schedule
Cost
Constraints
Demand
Constraints
Plant Specific | Model Model
Constraints | Seeker Seeker

Comparison
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this...

om
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Exampl




... to this (Generated Profile)

100

90 -

80 -

70 +

60

50 -

40

30 -

20 -
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Summary

e Learning constraint models from few, positive examples
e Generalize models to arbitrary size (work in progress)

e Specific problem domain leads to more specific model
generator
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