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Abstract. Game theory is concerned with reasoning about strategic interaction between
self-interested entities. This theory was not originally meant for computational settings, but
researchers have observed that the set of concepts developed in this field can be adapted
and applied to multi-agent systems in particular [1]. In this paper we elaborate on some
challenges encountered when looking at the intersection between game theory and the theory
of computer science, and discus the role that constraint programming (CP) can play in solving
them.

1 Introduction

We first elaborate on Constraint Programming and Game Theory since the challenges discussed in
the paper are in the intersection of these two areas of research. After this elaboration we present
the structure of the paper.

1.1 Constraint Programming

The basic idea of constraint programming(CP) is that the user states the constraints and a general

purpose constraint solver is used to solve them. Constraints are just relations. A constraint satis-
faction problem (CSP) states which relations should hold among the given decision variables [2].
A solution is an assignment to the decision variables that satisfies the constraints of the CSP. In a
constraint optimisation problem (COP), the solutions are ordered under a given preference relation.
The goal, when solving a COP, is not only to find a solution that respects all the constraints but
also that satisfies the preferences given to the greatest degree possible.

The Quantified Constraint Satisfaction Problem (QCSP) [3] is an extension of the classic CSP,
where parameters under the control of the decision maker are modelled as existentially quantified
variables since a value (a decision) must be assigned (made) to these variables. All uncertain vari-
ables are universally quantified so that decision makers must consider how to preempt every possible
assignment to those variables. Of course, such a formulation means that it will be seldom possible
for a decision maker to satisfy the constraints of the QCSP since it is likely that some values of
the universal (uncertain) variables cannot be preempted. Therefore, in [4], the authors assist the
decision maker by abstracting their decision problem so the specific reasons for infeasibility can be
focused upon. Their approach is a non-intrusive approach that assumes nothing about the capabil-
ities of the solver but a way of testing the consistency of a QCSP. Such non-intrusive explanation
algorithms are the most commonly used in practice, e.g. in ILOG Configurator. The non-intrusive
approach is advocated by Junker [5].



Distributed constraint reasoning (DCR) is a powerful framework for representing and solving
distributed combinatorial problem applications in multi-agent coordination. These problems are
becoming ubiquitous as a result of the unprecedented expansion of the internet and advances in
smart devices technologies which, in turn, have an increasingly important impact in industrial and
other real-world applications. DCR has recently gained momentum due to its ability to handle
many combinatorial problems that are naturally distributed over a set of agents such as distributed
scheduling, distributed planning, distributed resource allocation, target tracking in sensor networks,
distributed vehicle routing, optimal dispatch in smart grid, etc.

These applications can be solved by a centralised approach once the knowledge about the prob-
lem is delivered to a centralised authority. However, in such applications, it may be undesirable
or even impossible to gather the whole problem into a single centralised authority. In general, this
restriction is mainly due to privacy and/or security requirements: constraints may represent strate-
gic information that should not be revealed to other agents that might be seen as competitors, or
even to a central authority. The cost associated with translating all information to a single format
may be another reason: in some settings constraints arise from complex decision processes that
are internal to an agent and cannot be articulated to a central authority. In addition, sending the
whole problem description to a centralised location will create a bottleneck on the communication
towards that location.

In DCR a problem is expressed as a distributed constraint network. A distributed constraint
network is composed of a group of autonomous agents in which each agent has control of some
elements of information about the problem, that is, variables and constraints. Each agent owns its
local constraint network; variables owned by different agents are connected by constraints.

Traditionally, there are two large classes of distributed constraint network. The first class con-
siders problems where all constraints are described by boolean relations (hard constraints) over the
possible assignments of variables they involve. They are called distributed constraint satisfaction
problems (DisCSP). The second class of problems are distributed constraint optimisation problems
(DCOP) where constraints are described by a set of cost functions for combinations of values as-
signed to the variables they connect. In DisCSP the goal is to find assignments of values to variables
such that all (hard) constraints are satisfied while in DCOP the goal is to find assignments that min-
imise the objective function defined by the sum of all constraint costs. The asymmetric distributed
constraint satisfaction problem (ADisCSP) is an extension of the general DisCSP formalism that
models constraints that produce different gains (or costs) for the participating agents while allowing
agents to keep their utilities private.

An ADisCSP ([6]) is composed of a group of autonomous agents, where each agent has control
of some elements of information about the whole problem, that is, a set of variables and constraints.
Each agent holds its local constraint satisfaction problem where its variables and constraints are
private. Variables in different agents are connected by constraints. Agents must assign values to
their variables so that all constraints are satisfied. To achieve this goal, agents check the value
assignments to their variables for local consistency and exchange messages to check consistency of
their proposed assignments against constraints that contain variables that belong to other agents.

1.2 Game Theory

Game theory studies situations in which multiple agents with conflicting objectives must reach
a collective decision. In a strategic game, each player is given a set of actions and has to choose



one to perform. A reward is given to a player by a utility function which depends on the actions
taken by other players. In many multi-agent problems, agents must interact with each other to
achieve a global goal while optimising their own individual preferences. The challenge is to design
local control algorithms for the individual agents that ensures the desirable global behaviour while
achieving the given system objective. The success of game theory in modelling interaction of selfish
agents in multi-agent systems has been proven.

Normal-form games are probably the simplest representation of strategic games [7]. In a normal-
form game, each agent chooses an action from its action sets. Each agent has a utility function that
specifies its own payoff under each possible combinations of strategies of other players. n-players
normal-form games are represented by a n-dimensional matrix whose size is exponential in the
number of players/agents. The intractability of this representation is a severe limitation and the
question of a compact representation language for agents utility function is of crucial importance.

Motivated by the fact that in many scenarios an agent’s utility is directly dependent on only a
subset of the total number of agents, graphical games have been introduced in [8]. Graphical games
are a compact representation of normal-form games that use a graphical representation to capture
the payoff independence structure of the game. Precisely, the utility of each agent depends on some
subset of the other agents decisions rather than on all other agents decisions.

The hypergraphical games model [9] provides a compact representation of the problem, in which
agent interactions are represented as normal-form strategic games, and the relationship topology
between the agents is represented as a hypergraph. Each agent has a set of strategies, and a utility
function specifying the agent’s payoff under each possible combination of the strategies of its neigh-
bouring agents in the hypergraph. Hypergraphical games are a generalization of graphical games [3]
where each agent is involved in exactly one subgame.

Boolean games are an expressive and compact class of games for which the goal of the players
is modelled by a logical propositional formula. Each player has a set of possible actions by which
he can manoeuvre toward the goal. The set of actions is represented by a valuation of the variables
controlled of player. The strategy of each player is then represented by the set of valuations over
the controlled variables. The goals and the actions of other players may go in the same direction
or against each other. Thus, the formula modelling the goal of each player describes outcomes of
the game where both the variables controlled by the player and the variables controlled by other
players may appear. Boolean games are a more compact description than the normal form game
description which represents the game by way of a matrix. The advantage at the description level
comes with a computational cost that is paid at the reasoning phase when a solution concept has
to be found. A solution concept is a formal rule describing which strategies will be adopted by the
players and the result of the game.

Given a set of agents, a coalition structure is a partition of the set of agents into subsets. In
hedonic games, the appreciation of an agent over a coalition structure depends only on the coalition
he is member of and not how the others are grouped. In that sense, hedonic games are more general
than matching under preferences since any coalition structure is feasible. Hedonic games have been
successfully used in diverse applications such as scheduling group activities, clustering in social
networks, and task allocation for wireless agents [10]. Similar to stable matching problems, stability
is the most important criterion used to evaluate the coalition structures. Here, stability holds when
every agent has no incentive to leave his current coalition to different one.

Constraint games, which use constraint satisfaction/optimisation problems (CSP/COP) as the
underlying tool for expressing players preferences, have been recently proposed [11]. In a constraint
game each player controls a set of finite domain variables and their Cartesian product defines a



possible action space for the player. Each player owns a CSP on all players variables which defines
satisfaction. Besides the use of hard (global) constraints that provide a crucial expressivity in
modelling, constraint games allow the compact expression of most classical games such as congestion
games, network games, strategic scheduling, etc.

In a purely selfish environment, rational agents might be tempted to always react to the current
context with playing their best strategy, i.e. the strategy that maximises their local utility func-
tion. This behaviour might cause instability in the system. The process of stabilising the system
corresponds to searching for a Nash Equilibrium (NE), one of the most studied concepts in game
theory. A NE corresponds to the situation where the best (dominant) strategy is selected by each
agent such that all global goals are achieved, and no agent can improve its payoff by changing its
strategy. To model more realistic problems, e-approximate Nash Equilibria (e-NE) are considered,
in which no agent can improve its payoff by more than some minimum threshold e.

1.3 Structure of the paper

In this paper we have identified four areas in the field of Game Theory where we believe CP can
contribute. First we elaborate on the potential contributions in the area of stable matching and
hedonic games. Then, we discus why we think CP can play a crucial role in the efficient implementa-
tion of Boolean games. We continue with our reasons to believe why distributed constraint solving
can be of great help too. And finally, we consider those cases where we need to (automatically)
explain the user why it is not possible to achieve a Nash equilibrium.

2 From Matching Under Preferences to Hedonic Games: A Challenging
Research Area for Constraint Programming

Many real world problems involve matching preferences between agents while respecting some sta-
bility criteria [12]. This family of problems has gained considerable attention as it has a wide range
of applications such as assigning doctors to hospitals, students to college, and in kidney exchange
programmes. For instance, in College Admissions one needs to assign students to colleges while
respecting the students’ preferences over colleges, the colleges’ preferences over students, as well as
college quotas. Gale and Shapley introduced the first polynomial time algorithm for solving this
problem in their seminal paper [13]. However, when facing real world situations the problem of-
ten considers additional optimality criteria. In many cases, the problem becomes intractable and
specialised algorithms for solving the standard version are usually hard to adapt. The use of a
modular approach such as constraint programming is very beneficial to tackle such cases. Express-
ing problems involving preferences in CP is extremely beneficial for tackling variants that involve
side constraints. We first give a summary of our contributions in [14,15,16,17,18], then we discuss
potential research directions for the general case of hedonic games.

2.1 Constraint Programming Approaches for Stable Matching

We consider in [14] the notion of two-sided stability as a global constraint. We first make the obser-
vation that the previous CP propositions on two-sided stability problems do not enforce a complete
filtering, i.e., Arc Consistency (AC), however they do maintain a weaker form of consistency called
Bound Consistency (BC). Next, we propose an incremental algorithm that achieves BC with O(L)



time complexity where L is the length of the preference lists, thereby improving the previously best
known complexity of O(c x L) (where ¢ is the maximum quota). We also present, for the first time,
an adaptation of the filtering to achieve AC on this global constraint with an additional cost of
n X L (where n is the number of residents).

Based on the BC propagator, we show that the hospital/resident problem with forced and
forbidden pairs can be solved in polynomial time. Furthermore, we show that the particular case
of this problem for stable marriage can be solved in O(n?) which improves the previously best
complexity by a factor of n?. Finally, we present a set of experiments to evaluate the filtering
efficiency on randomly generated instances. The experimental results show compelling evidence
that AC does further prune the search space as compared with BC, however, it considerably slows
down the exploration of the search space.

In [15], we tackled the general case of many-to-many stable matching. Our propositions are
based on a powerful structure called rotation. Informally, given a stable matching M, a rotation is
an ordered list of pairs of M such that shifting each agent’s match with the next one’s partner gives
a new stable matching. We leverage some known properties related to rotations in order to propose
a novel SAT formulation of the general case of many-to-many stable matching. We show that unit
propagation [19] on this formula ensures the existence of a particular solution. Next, we use this
property to give an algorithm that maintains arc consistency if one considers many-to-many stable
matching as a (global) constraint. The overall complexity for arc consistency is O(L?) time where
L is total input size of all preference lists. Our experimental study on hard instances of sex-equal
and balanced stable matching show that our approach outperforms the state-of-the-art constraint
programming approach.

2.2 Finding Robust Solutions to Stable Marriage

We introduce the notion of (a,b)-supermatches as a measure of robustness for SM. Informally, a
stable matching M is called an (a, b)-supermatch if any a agents decide to break their matches in
M, thereby breaking a pairs, it is possible to “repair” M (i.e., find another stable matching) by
changing the assignments of those a agents and the assignments of at most b others. This concept
is inspired by the notion of (a,b)-supermodels in boolean satisfiability [20] and super solutions in
constraint programming [21].

Given a stable matching M, we show that, for every pair (m,w) € M (where m is a man and
w is a woman) to remove, the closest stable matching to M that does not contain (m,w) can be
computed in polynomial time using a powerful structure called graph poset. This observation has
led to a polynomial time procedure to verify whether a given stable matching is a (1, b)-supermatch.
Next, based on this procedure, we design a constraint programming (CP) model, as well as local
search (LS) and genetic algorithm (GA) to find the most robust stable matching. Our empirical
evaluation on randomly generated instances shows that the local search algorithm is by far the most
efficient approach to tackle this problem.

A preliminary version of this work appeared in [16] and a more complete version is accepted for
publication in [17].

2.3 Popular Matching and its Variants

We consider here the problem of matching a set of applicants to a set of posts, where each applicant
has a preference list, ranking a nonempty subset of posts in order of preference, possibly involving



ties [22]. The popular matching problem is to determine if a given instance admits a popular
matching and to find such a matching, if one exists. We say that a matching M’ is more popular
than M if the number of applicants that prefer M’ to M exceeds the number of applicants that
prefer M to M’. A matching M is popular if and only if there is no matching M’ that is more
popular than M.

The popular matching problem has never been studied in the context of CP. We study this
problem and propose the first CP formulation of it. We consider two cases of the problem of
popular matching - instances with and without ties in the preference lists - and show that one can
elegantly encode these problems using the Global Cardinality Constraint gec [23].

A preliminary version of this work appeared in [18].

2.4 From Matching Under Preferences to Hedonic Games

Many research work have been done in the literature to understand under which conditions stable
coalitions exist in hedonic games. These restrictions are related to the way the preferences are
expressed. Moreover, some weaker forms of stability are often considered when no stable coalition
exist [10,24].

Challenge 1 How CP can help in determining the existence of stable coalitions in hedonic games?

While CP has been successfully applied to a variety of matching under preferences problems,
the extension of these proposition to hedonic games have never been considered. We think that the
flexibility of CP makes it a very promising candidate to address classic questions in hedonic games.
Example of such question concern the existence of stable coalition and finding one if it exists.

3 Extending CP framework for solving efficiently Boolean games

Challenge 2 Can we come up with new CP techniques to solve Boolean games efficiently?

In the literature, most attention has focused on designing new preference schemes [25,26,27]
and representations [28] extending the Boolean games framework. Because of the computational
hardness associated with solving Boolean games, little attention has been paid to solving Boolean
games efficiently. Recent work has proposed an answer-set programming (ASP) approach [29]. The
declarative paradigm of ASP facilitates the formulation of the game into an ASP program that
naturally expresses the goal of agents as a set of disjunctive rules. However, this framework does
not scale to more than 100 agents. This presents a challenge for future study, namely addressing this
gap in the literature by proposing new CP techniques for solving a wide range of solution concepts
and preferences envisaged for Boolean games.

On the other hand, a Boolean game can be seen as a multi-agent system description where
the solutions returned by the agents entail the satisfaction of each agent preferences as well as the
optimisation of a global objective function. In this context, the Distributed Constraint Optimisation
Problem (DCOP) [30] and the distributed Constraint Satisfaction Problem (DisCSP) [31] have been
used as a vehicle for using the CP framework to solve graphical games. The message-passing protocol
at the core of these approaches enforces the privacy of local knowledge [32]. The protocol does not
preserve the privacy of the players’ strategies in a coalition of agents. As a consequence, an agent
can make a decision based on the action of other agents that is not part of its coalition. This raises
an additional research challenge, namely the development of extended privacy schemes for DCOP
and the DisCSP in order to solve more realistic boolean games.



4 Distributed Constraint Reasoning for Game Theory

In a distributed setting, such as that in multi-agent systems, agents are usually not willing to reveal
their private information (including beliefs, preferences, and utilities) to other agents that can be
seen as competitors. Therefore, a centralised solving process that requires that all relevant infor-
mation to be gathered into a single agent (or computer) is not desirable. Additionally, centralising
all information in a distributed setting throughout the network into a single agent is not always
feasible. Thus, given the multi-agent setting, algorithms to compute solutions should be distributed,
to avoid the need for agents to reveal potentially private information.

Early work on solving games (finding an equilibrium) focused on identifying graph topologies
that allowed polynomial-time solutions, based on algorithms for Bayesian Network inference [8].
More recent approaches focus on arbitrary graphs with cyclic dependencies, and represent the prob-
lem as ADisCSP [6], maintaining the individual utility functions as extensional table constraints [33].
For dense graphical games with large strategy sets, this encoding of the table constraints becomes
very expensive in the number or size of messages that need to be exchanged.

In [31], we developed a new model of hypergraphical game as an ADisCSP based on a new global
constraint that encodes the requirement of finding an approximate best strategy given the decisions
of other agents in its neighbourhood. We also introduced asymmetric asynchronous backtracking,
AABT, a new algorithm for solving ADisCSP with global constraints using intelligent backtracking
to avoid thrashing. AABT is then used to solve the problem of finding an e-NE in hypergraphical
games formulated as an ADisCSP.

Challenge 3 How to solve Game Theory using Distributed Constraint Reasoning?

The challenges posed by solving distributed optimisation problems include dealing with resource
restrictions (such as limits on time, space and communication), privacy requirements, exploiting
opportunities for cooperation, and designing conflict resolution strategies. Thus, compact repre-
sentations for games that facilitate the modelling of agents with limited resources while providing
solutions that keep their utilities private need to be designed. The usage of methods developed in
the field of constraint programming for modelling and solving strategic games needs to be studied.
Mainly, the usage of rich constraints language to model different games and the incorporation of
elaborated search strategies for constraints games needs to be investigated. DCR is the natural
interface between constraint programming and game theory research areas. Actually, DCR repre-
sents an opportunity for both research communities to collaborate to tackle challenges in solving
the arising distributed applications. We believe that DCR has the potential to contribute actively
in this area of research.

5 Computing preferred explanations in the Rational Verification
framework

In [1] the authors are concerned with the question of how we should think about the issues of
correctness and verification in multi-agent systems. They argue that the classical view of correctness
is not appropriate for multi-agent systems. In a multi-agent setting it is more appropriate to ask
what behaviours the system will exhibit under the assumption that agents act rationally in pursuit
of their preferences. They advance the paradigm of rational verification for multi-agent systems, as
a counterpart to classical verification. Rational verification is concerned with establishing whether a



given temporal logic formula ¢ is satisfied in some or all game-theoretic equilibria of a multi-agent
system, i.e. whether the system will exhibit the behaviour ¢ under the assumption that agents
within the system act rationally in pursuit of their preferences/goals.

As explained in [1], the basic idea of equilibrium checking is that, instead of asking whether a
given temporal formula ¢ is satisfied on some possible run of the system, we instead ask whether
it is satisfied on some run corresponding to a Nash equilibrium of the system. Informally, one
can understand this as asking whether ¢ could be made true as the result of rational choices by
agents within the system. One could even consider the question of verifying whether a given profile
represents a Nash equilibrium.

Challenge 4 How to explain the non existence of (a run corresponding to) a Nash equilibrium?

We argue for a focus on those scenarios where we are confronted with unsatisfiable queries.
That is, cases where ¢ cannot be made true as the result of rational choices by agents within the
system. In those scenarios it might be desirable to explain the reason of the inconsistency. In order
to achieve this goal we propose to take advantage of the extra level of expressivity that we have in
the Quantified Constraint Satisfaction framework [3] and cast the computation of explanation for
scenarios with no run corresponding to a Nash equilibrium as the computation of explanations for
an unsatisfiable quantified constraint satisfaction problem.

Challenge 5 How to rank the explanations to the non existence of (a run corresponding to) a Nash
equilibrium?

The framework presented in [4] also covers the generation of preferred explanations in a QCSP
setting, where both total and partial orders amongst the requirements of a QCSP and efficient
algorithms for each case are proposed. As there can be exponentially many ways to explain why
there is no run corresponding to a Nash equilibrium, we believe that this handling of preference
can come in handy to give priority to more important explanations.

6 Conclusion

In many societal challenges we face today, including cybersecurity, electronic commerce, and game
theory on social networks, we must make more intelligent decisions. In particular, cybersecurity
has become an increasingly important problem domain due to the ubiquity of the internet. Many
challenges in this area can be modelled and reasoned with using game theory techniques. However,
this is a multidisciplinary domain with connections to many research areas including security,
optimisation, distributed systems, and machine learning, and it should be addressed from different
perspectives by a collaborative approach.

In this paper, we have elaborated on the intersection between game theory and the theory of
computer science. We have discussed some challenges encountered in this intersection and elaborated
on the role that CP can play in solving them.
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