
Automatic
Reformulation in

Peter J. Stuckey

“We heard what you said but we knew what you meant”

Overview

A little bit about MiniZinc

Predicates, functions, and flattening

Automatic Reformulations
Linearization, Sets, and Strings

Multi pass compilation

Autotabling

Symmetry detection

Globals detection

Conclusion

Roberto Amidini, Maria Garcia de la Banda, Gustav
Bjordal, Jip Dekker, Thibaut Feydy, Pierre Flener,
Graeme Gange, Tias Guns, David Hemmi, Kevin
Leo, Kim Marriott, Chris Mears, Nick Nethercote,
Justin Pearson, Andrea Rendl, Andreas Schutt,
Joseph Scott, Guido Tack, Mark Wallace

“Alone we can do so little; together
we can do so much.” – Helen Keller

MiniZinc Predicates

MiniZinc is based on model rewriting

Predicates: define a new (global) constraint
predicate alldifferent(array[int] of var int: x)
 = forall(i,j in index_set(x) where i < j)
 (x[i] != x[j]);

Essential to treatment of globals
solvers use a default decomposition, or

replace with their own decomposition or direct constraint
predicate alldifferent(array[int] of var int: x);

Advantages: all globals available for all solvers

MiniZinc Functions

Its also useful to have functions
function array[int] of var int: global_cardinality
 (array[int] of var int: x, array[int] of int: v)
= let { array[index_set(v)] of var int: c
 = [sum(i in index_set(x))(x[i] = v[j])
 | j in index_set(v)]; }
 in c;

Common subexpression elimination is better

almost a third of the global constraint catalog are functions

It also makes the MiniZinc core simpler
function var int: abs(var int: x) =
 let { int: m = max(-lb(x),ub(x));
 var -m..m: y;
 constraint int_abs(x,y); }
 in y;

local constraints

Mapping a high level model
complex loops

deep expressions

functions and predicates

To a flat model
variables

constraints

objective

Flattening

40 array[0..3] of var 0..14: s;

41 var 0..14: end;

42 var bool: b1;

43 var bool: b2;

44 var bool: b3;

45 var bool: b4;

46 constraint int_lin_le ([1,-1], [s[0], s[1]], -2);

47 constraint int_lin_le ([1,-1], [s[2], s[3]], -3);

48 constraint int_lin_le ([1,-1], [s[1], end], -5);

49 constraint int_lin_le ([1,-1], [s[3], end], -4);

50 constraint int_lin_le_reif([1,-1], [s[0], s[2]], -2, b1);

51 constraint int_lin_le_reif([1,-1], [s[2], s[0]], -3, b2);

52 constraint bool_or(b1, b2, true);

53 constraint int_lin_le_reif([1,-1], [s[1], s[3]], -5, b3);

54 constraint int_lin_le_reif([1,-1], [s[3], s[1]], -4, b4);

55 constraint bool_or(b3, b4, true);

56 solve minimize end;

Fig. 4. FlatZinc translation of the MiniZinc job shop model.

logical constraints (e.g. bool_or, bool_not), set constraints (e.g. set_subset,
set_card), element constraints (e.g. array_int_element), and coercion con-
straints (e.g. bool2int). There are also reified versions of many constraints which
take an additional Boolean argument, e.g. int_eq_reif, set_subset_reif.

Also, a FlatZinc model instance may include calls to any global constraints
that the target solver supports natively, as Section 2.7 explained.

Annotations. FlatZinc’s annotations are the same as MiniZinc’s, although
any expressions within them must of course be valid FlatZinc expressions.

Writing a FlatZinc front-end. A FlatZinc front-end for a solver must
parse the FlatZinc, and translate declarations and constraints into whatever
form the solver requires. The grammar can be expressed in a way that most type
and inst errors manifest as syntax errors, which reduces the work that must be
done by the FlatZinc front-ends. Any FlatZinc constraints not handled by the
solver can be converted into run-time aborts. These steps are easy by language
implementation standards, because FlatZinc is so simple. Section 5 describes
how our existing tools help further with this task. A solver writer must also
specialise globals.mzn, which is a trivial exercise in removing predicate bodies.

4 Translating MiniZinc to FlatZinc

The translation from MiniZinc to FlatZinc has two parts: flattening, and the rest.
We use the FlatZinc translation in Figure 4 of the MiniZinc model instance from
Section 2.2 as an example. Line 40 is the original 2D array of decision variables,
mapped to a zero-indexed 1D array. Line 41 is the original end variable. Lines
42–45 are variables introduced by Boolean decomposition. Lines 46–55 are the

0 % (square) job shop scheduling in MiniZinc

1 int: size; % size of problem

2 array [1..size,1..size] of int: d; % task durations

3 int: total = sum(i,j in 1..size) (d[i,j]); % total duration

4 array [1..size,1..size] of var 0..total: s; % start times

5 var 0..total: end; % total end time

6

7 predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =

8 s1 + d1 <= s2 \/ s2 + d2 <= s1;

9

10 constraint

11 forall(i in 1..size) (

12 forall(j in 1..size-1) (s[i,j] + d[i,j] <= s[i,j+1]) /\

13 s[i,size] + d[i,size] <= end /\

14 forall(j,k in 1..size where j < k) (

15 no_overlap(s[j,i], d[j,i], s[k,i], d[k,i])

16)

17);

18

19 solve minimize end;

Fig. 1. MiniZinc model (jobshop.mzn) for the job shop problem.

20 size = 2;

21 d = [2,5,

22 3,4];

Fig. 2. MiniZinc data (jobshop2x2.data) for the job shop problem.

2.3 Types and Insts

MiniZinc provides three scalar types: Booleans, integers, and floats; and two
compound types: sets, and arrays. There are no user-defined types, however we
will see shortly that restricted types such as integer and float ranges are allowed.
Scalars and sets have a built-in (lexicographical) ordering.

As well as having a type, each variable has an instantiation (often abbreviated
to inst), which indicates if it is fixed in the model to a known value (a parameter,
shortened to par) or not (a decision variable, shortened to var). A pairing of a
type and an inst is called a type-inst.

Booleans, integers and floats may be parameters or decision variables. Ex-
ample syntax for scalars: par bool, var int, float; if the inst is omitted it
defaults to par. There is no automatic coercion of integers to floats.

Sets can only contain par scalars. Sets of integers can be par or var, but all
other sets must be par. For example: var set of int is legal, but var set of

bool and set of var int are illegal.

Arrays must be par, i.e. of fixed length. They can be multi-dimensional. Each
dimension’s index set is a contiguous range of integers. Arrays may contain par

Critical Flattening Steps

All standard in language compilers

Constant folding

Common Subexpression Elimination

two names for the same thing is deadly for CP

particularly for learning solvers

Equality tracking

substitution/elimination of common names

libmzn

translationtranslation

Pythonmodel.mzn
var 0..100: b; % no. of banana
cakes
var 0..100: c; % no. of chocolate
cakes
% flour
constraint 250*b + 200*c <= 4000;
% bananas
constraint 2*b <= 6;
% sugar
constraint 75*b + 150*c <= 2000;
% butter
constraint 100*b + 150*c <= 500;
% cocoa
constraint 75*c <= 500;
% maximize our profit
solve maximize 400*b + 450*c;
output ["no. of banana cakes = ",
show(b), "\n",
 "no. of chocolate cakes =
", show(c), "\n"];

alldiff.mznalldiff.mznalldiff.mzn

globals.mzn

alldiff.mzn solver

frontend

Java

C++
API

API

App

prettyprinter

libmzn
translation

output

b = 2;
c = 2;

==========

data.dzn
N = 15;

Automatic Reformulation

Sets

MiniZinc mantra
your model runs on all solvers

Problem: Set variables are not supported

Solution nosets.mzn (200 lines of code)
translate set variables to arrays of booleans

crucial use of functions to avoid multiple translations

convert set operations to functions on arrays

no set variables in the final FlatZinc

Strings

MiniZinc extended to include string variables

not yet released

String solving not supported by most solvers

only Gecode+S

Map strings to existing FlatZinc
Translate strings to arrays of integers

Map constraints on strings to constraints on arrays

Map string operations to operations on arrays

concatenation, reverse, length, regular, gcc, lexorder

Not that uncompetitive wrt to Gecode+S

Linearization

The most important transformation
allows MiniZinc to run on MIP solvers

beware they are quite competitive on CP problems

Linearization consists of
specialised linear global decompositions

predicate alldifferent(array[int] of var int: x)
 = forall(j in array_dom(x))
 (sum(i in index_set(x))(x[i] == j) <= 1);

general linearization by “big M” methods
special treatment of constraints on variables domains (x in S)
NEW: some globals treated as separators, e.g. circuit

Multi Pass Compilation

MiniZinc flattens to FlatZinc
many decisions made during flattening, e.g

var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
constraint x+y+z=12 -> y=max([x,y,z]);

becomes
var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
var 2..5: i0 = max([x,y,z])
var bool: b0 = (y = i0)
var bool: b1 = (x+y+z != 12)
constraint or(b0,b1);

Multi Pass Compilation

More information = better decisions
var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
var 2..5: i0 = max([x,y,z])
var bool: b0 = (y = i0)
var bool: b1 = (x+y+z != 12)
constraint or(b0,b1);

finally
var {2,4}: x; var {2,4}: y; var {5}: z;
constraint x != y;
constraint x+y != 7;

——

——————— 5
————— false

—————
true5

Multi Pass Compilation

Multi pass compilation

Key requirement: variable and expression paths

Gecode first pass: Other solver second pass

reduces model size: around 5%

reduces run time for MIP solvers: sometimes 50%

can improve compile time, no worse than double

Auto Tabling

Annotate a predicate as: :: presolve(autotable);

Solution are computed

predicate replaced by a table constraint

Variations

call-based, and instance independent

Benefits

improved solving time

automatic reformulation of poor models

Not done in Australia

predicate rank_apart(var 1..52: a, var 1..52: b)
 = abs((a - b) mod 13) in {1,12};

predicate rank_apart(var 1..52: a, var 1..52: b)
 = table([a,b],[| 1,2 | 1, 13 | … | 52, 51 |]);

Learning Reformulation

Symmetry Detection

Generate symmetries of small instances
find which symmetries generalize across instances

Generate candidate model symmetries
ask the user or use theorem proving

Add symmetry breaking (dynamic/static) to model

Extension to dominance
separate out objective and/or some constraints

generate symmetries

convert to dominance constraints

Constraints

Therefore, these four symmetries form a generating set forG. The generating set is minimal
since any proper subset is not a generating set for G.

2.3 Detecting symmetries of a CSP via graph automorphism

A hyper-graph is a pair (V ,E)where V is a set of vertices andE is a set of hyper-edges, each
of which is a non-empty subset of V . An automorphism (or symmetry) f of a hyper-graph
(V ,E) is a permutation of V that preserves E, i.e. a permutation such that ∀{vi, . . . , vj } ∈
E : {f (vi), . . . , f (vj)} ∈ E.

Several methods have been defined for automatically finding the symmetries of a CSP
P by representing it as a (hyper-)graph G in such a way that each automorphism of G
corresponds to a solution symmetry of P (see, for example, [5, 21, 27, 29]). The main
difference among these methods is in how the elements of P are mapped to the vertices and
hyper-edges of G.

In this paper we will use the full assignments graph representation defined in [21].
Briefly, the full assignments graph is built from a given CSP P = (X,D,C) by (a) repre-
senting every literal in lit(P) as a vertex; (b) representing every constraint c ∈ C by a set
of hyper-edges: either a hyper-edge for every assignment that does not satisfy c or a hyper-
edge for every assignment that satisfies c; and (c) adding an edge between every two literals
that assign different values to the same variable. The choice of whether to use satisfying
or unsatisfying assignments can be made independently for each constraint (often choosing
the one that would result in the least amount of edges).

Example 4 The full assignments graph for the CSP given in Example 1 to represent the
Latin square problem of size 3 is shown in the left hand side of Fig. 3. The 9 × 3 = 27 lit-
erals in the instance xij = k, where i, j, k ∈ 1..3, are represented by the 27 vertices in the
graph, each labelled xijk , where the x has been omitted in the graph for clarity. The graph
also has (18×3) edges representing the 3 assignments that do not satisfy each of the 18 con-
straints, plus (9× 3) edges connecting the 3 different values of each of the 9 variables. The

C

C

C

F F

F

A

B

D D

C

C

C

C

C

C

F

F
F

F

F
F

B1

B

A A1

E

E1

E

1
1,2,

2
1,3,

2
1,2,

2
1,1,

1
2,2,

1
2,1,

1
1,1,

1
1,2,

2
1,1,

1
2,2,

1
2,1,

1
3,1,

1
3,2,

1
1,1,

1
1,3,

2
1,3,

2
1,2,

3
1,2,

3
1,3,

1
2,3,

2
2,3,

3
2,3,

1
3,3,

1
2,3,

1
4,4,

1
1,4,

1
3,1,

1
3,2,

1
4,1,

1
4,2,

1
1,3,

1
4,3,

2
3,4,

2
1,4,

2
4,4,

4
3,4,

4
2,4,

3
4,4,

3
3,4,

3
2,4,

4
4,4,

3
1,2,

3
1,3,

3
1,4,

1
3,4,

1
2,4,

1
2,4,

1
3,3,

2
3,3,

3
3,3,

3
1,1,

4
1,1,

4
1,2,

4
1,3,

4
1,4,

3
1,1,

Fig. 3 Full assignments graphs and generating sets for LatinSquare[3] and LatinSquare[4]. Note that parts
of the graph are omitted for legibility

Globals Detection

Find global constraints which are implied by the model
Use structure of model to find sub-problems

Generate candidate global constraints

Rank the global candidates by

coverage by solutions, size of global

Present the globals to the user in ranked order

Was available as a web tool: minizinc.org/globalizer

Highly important approach for non-expert modellers

gives a way to “lookup” the globals you need for your problems

User Interface
minizinc.org/globalizer

http://minizinc.org/globalizer

Other Reformulations

Bounds versus Domain propagation
we can analyse models to determine that bounds propagators will fail at the same time as
domain

Multiple reformulations (model portfolios)
e.g. map sets to multiple representations: array of bool, array of int

Essence trys all possible reformulations

Adding implied constraints
similar to symmetry and globaliser: which constraints to add

Associative Commutative CSE
use AC matching to find more CSE

can be much better than normal CSE on the right examples

The Holy Grail

Conclusion

MiniZinc is a modelling language based on reformulation

essential to supporting varied solvers (linearization)

Automatic Reformulation is widely used
language extensions by reformulation (sets, strings)

improving model flattening (multi-pass, auto tabling)

recognizing ways to improve a model (symmetry + globals detection)

Exciting new directions
“Learning from Learning Solvers” CP2016 showed we can improve our models by
looking at how learning solvers solve them!

“Automatic LBBD solving” AAAI2017 how we can create a hybrid MIP/CP
solution to any model that uses the strength of both

Progress to the Holy Grail

Better modelling languages,

supported by automatic reformulation

is a critical step towards the holy grail

CP is closer than it was, but we need it to
easier to learn

better analysis/transformation of models

faster solving

Remember the Holy Grail is (at least in theory) unattainable
But that should not stop us reaching for it

