“We heard what you said but we knew what you meant”

Automatic
Reformulation in

Peter . Stuckey

 Overview

=+ Alittle bitabou,tﬁMiniZinC
. Predicates,‘functi_ohs, and flattening

* Auto_maticRéfOrmulations
' ¢ LineériZatiOn, Sets, and Strings

- - * Multi pass compilatiOn

- W‘Aut-o_t'abling |

. Symmetry det_ecti-on

~ + Globals detection

~*» Conclusion

“Alone we can do so little; together
we can do so much.” — Helen Keller

Roberto Amidini, Maria Garcia de la Banda, Gustav

Bjordal, Jip Dekker, Thibaut Feydy, Pierre Flener,
Graeme Gange, Tias Guns, David Hemmi, Kevin
Leo, Kim Marriott, Chris Mears, Nick Nethercote,
Justin Pearson, Andrea Rendl, Andreas Schutt,
Joseph Scott, Guido Tack, Mark Wallace

N oo ,

~ * MiniZinc is based on model rewriting

+ Predicates: define a new (global) constraint
predicate alldifferent (arraviint] of var ink: x)
= forall(i,j in index set(x) where i < 7J)

(x[1] = x[3])7
< WEssential to treatment of globals
+ solvers use a default decomposition, or

~ *+ replace with their own decomposition or direct constraint
o predicate alldifferantlarrayfint] «of var int: x}}

~+ Advantages: all globals available for all solvers

- MiniZinc Functions

+ [ts also useful to have functions s e
function array{iht] ofovear IRt globat cardingit ey
i (array[int] of var int: x, array[int] of int:
= let { array[index set(v)] of wvar int: '
e sum(l in index set (x)) (x[i] vijl)
e B N o} index oty Paneat sy
-_ in;c;?1

Common subexpression elimination is better

~* almost a third of the global constraint catalog are functions

. * It also makes the MiniZinc core simpler
'functioh Var int:-abS(var S PR e S :
= s e C SR local constraints
| var —m S | | | . .
constralnt 1nt abs(,y)
e ; |

% (square) job shop scheduling in MiniZinc

int: size; ‘ : % size of problem
array [1..size,1..size] of int: d; % task durations
int: total = sum(i,j in 1..size) (d[i,jl); % total duration
array [1..size,l..size] of var O..total: s; 7 start times

var 0..total: end; % total end time

~* Mapping a high level model

%# Complex IOOPS predicate no_overlap(var int:sl, int:dl, var int:s2, int:d2) =
sl + dl <= s2 \/ s2 + d2 <= si;
~ constraint
forall(i in 1..size) (
forall(j in 1..size-1) (s[i,j] + d[i,jl <= s[i,j+11) /\
s[i,size] + d[i,size] <= end /\
forall(j,k in 1..size where j < k) (

2 | STt - D s = G no_overlap(s([j,il, d[j,i], slk,i], d[k,i])
+ functions and predicates > :

* deep expressions

)

solve minimize end;

array[0..3] of var 0..14: s;
var 0..14: end;

var bool: bil;

var bool: b2;

var bool: b3;

var bool: b4;

* To a flat model

* variables
* constraints

* objective

constraint
constraint
constraint
constraint

constraint

constraint
constraint

constraint

constraint
constraint

int_lin_le
int_lin_le
int_lin_le
int_lin_le

([1,‘1] ’
CrE =175
Chtsetle
CES=115

int_lin_le_reif ([1,-1],
int_lin_le_reif ([1,-1],
bool_or(bl, b2, true);
int_lin_le_reif([1,-1],
int_lin_le_reif ([1,-1],
bool_or (b3, b4, true);
solve minimize end;

[s[0],
[s[2],
[s[1],
[s[3],
[s[o0],
[s[2],

[s[1],
[s[3],

s[1]1]1,
<311
end 1, -
end], -
< 7 b e
s[ol], -

5[3]]’ %
S[i]]’ T

Critical Flattening Steps

|+ All standard in language compilers
+ Constant folding
B 'Common Subexpression Elimination
wlvAtWonames for the same thing is deadly for CP

s particularly for learning solvers

o Equahty trackmg

- f W Subst1tut1on/ ehmmatlon of Common names

-
model.mzn

var 0..100: b; % no. of banana
cakes

var 0..100: c; ¢ no. of chocolate
cakes

% flour

constraint 250*b + 200*c <= 4000;
$ bananas

constraint 2*b <= 6;

% sugar

constraint 75*b + 150*c <= 2000;
$ butter

]
constraint 100*b + 150*c <= 500; ranSIatlon
8% cocoa

- X constraint 75*c <= 500;
) % maximize our profit

wMMdlIviauuwvi i
solve maximize 400*b + 450%*c;

|
: output ["no. of banana cakes = ", I I bmz I l - Wil I W iiIWil Wl W ‘
Zres show(b), "\n",

"no. of chocolate cakes =

, show(c), "\n"1;
' \. I J

q . D
: globals.mzn

¥ frontend

prettyprinter

2 \. J

[alldiff.mzn

J

RS
e b
2

ic Reformulation

e S . S . . : e (e 340 £ 1 : ; =SS
L R s e Y LE & s : : ' -
e Pr i gl e dt Y v . 3 ; [. :
St o : R o B 1Y - e N : ’ 2 a3
oy p 3 . " ’ 4 B Rl R - ¢ - A Al
s) L 1~ A y I - , 3 2 -
Y = g - ; 5 R . < .
-¥} s BT . 5o hai 72 .
.5 A 3 3 3
8 - ~J A Lo P Z : - :
: . e s . = - : : . 4
. o B -
- f - 2 : . . - % A = : 2
SetS 2 . | v
P > : e
: - = - .
- it or =
e d ¢ : : -
- .'. - 4 - ’;' . 4
N J - = - E
g - £ . . .
== b o s -

~ » MiniZinc mantra

+ your model runs on all solvers

|+ Problem: Set variables are not supported

. -SolutiOh nosets.mzn (200 lines of code)

. ”’.‘A trahslate set variables to arrays of booleans

s cmcial use of'functions to avoid multiple translations
s Con‘}ért.set operationsto functions on arrays

~ * noset variables in the final FlatZinc

cxb, : N . : v : S e -
e Yy "'~i =" 2¢ = g 2 . . — : ;
o | S S ot £ NN o L g ! 3 - v, > ; §
ot o 2 7 B T R g L . : - - 3) 8 ¢ - : :
Thy v i - . . -y » FRE Ty : SN .
" 4T 3ol i WSy X T e o - :
= o - o / 3 :
o s e T g .
B - = - 3 o -
.] e . . . =7
- o) s .
: : - g : T - o
- S i = : . , e2%
> 5 : e
- =] . - . e
J _' 4 - . .
- .-. ~ 4 - ’4" <« y
- ! ! % s !
.
.
¥
i’
E

+ MiniZinc extende‘dto include string variab_les_ _

~* not yet released
* String solving not supported by most solvers

- : 0h1YGéc0de.+S

W Map strmgs to existing FlathC
' Translate strings to arrays of mtegers
3 ,» Map constramts on strings to constraints ‘on arrays
- Map string Opefations to opei‘ations on arrays
= Coﬁéaténation, '.reversé,'llength, re.gular, gcc, lexorder

Not that 'uncom'pe'titiv'e wrt to Géc-QdleS

~ Linearization

- # The most important transformation
* allows MiniZinc to run on MIP solvers

* bewarethey_‘"are quite competitive on CP problems
+ Linearization consists of

~ * specialised linear global decompositions

predicate alldifferent (arraylint] of var int:
= forall(j in array dom(x)) |

| (sum(i in index set(x)) (x[i] == 3J) Ly

¢ general linearization by “big M” methods
» spec1a1 treatment of constraints on Var1ables domams (2 er 8

* NEW: Some globals treated as separators e.g. circuit

 Multi Pass Compilation

-+ MiniZinc flattens to FlatZinc

* many decisions made during flattening, e.g
var (2,4 xxwar {2, 435 ys Va2 A s
- constraint all different([x,y,z]);

4

 constraint x+y+z=12 -> y=max([x,y,z]);

~* becomes | _
'-vaf‘{2,4}: Xy o vardo b v uae {004 B oy
constraint all different([x,y,z]);
var 2;.5§;jl)é=1nax([x,y,z])
.1 var:booI;'bO_i_(y ? iO)

. var bool: bl = (xty+z != 12)

" chstraih£ Qr(bO;b1);;_;; __

 Multi Pass Compilation

+ More information = better decisions
var {2,4}:-X;‘Var (2. 4): v: var (205} -;
| constraint'all cditnterent (Ix, g 2l

Yval v il s meR e o o) 5

s beoli b - Ly = 1oy false

- var bool: bl = (xty+s |= 12} true

~constraint ex{kbybi)rs

+ finally
tvar'{2/4}1:X;

L conStRgait o ke

- Multi Pass Compilation

.+ Multi pass compilation

4

Key requirement: variable and expression paths

Gecode first pass: Other solver second pass

- reduces model size: around 5%

- reduces run time for MIP solvers: sometimes 50%

can improve compile time, no worse than double

L A e - U v Ry - : A el A A TS A - - = =S AL e, e Sy PP Y T T L
NI AT /] i Wiga Py g ’ ‘ - =~ : R e o o et s - T
: - : T S TR A p X P : : {z ; : XX For AT
BLP= e NG 5.5 55 v — < : . : p ’ e R i
e 3 ST ok sere hell =g g . 2 - : : s s -
N ot - R it L B = AT S ’ - e
oy v ” 2 . - ' . - : - ¢ : o A 2
o ¥y ot i S X T el - , - : :
7 e 0t / g y . » K : :
.2 Lo A T g 3 3 3
. - L) = o z 3 o e : 3
. : T s Ty 3 - - Y) 2 - 3
> - : Rl s : 2 ' : : .
/ - . 8
o : : ‘ O . ’ | v . I l I
s > 3 : A
: 2. -
7 = ’ . . 2 - . ey s
S s . - i : : . 5
N e - o : -
. ‘ =T . - S
U o et - ; : - !
g - > - b
J e -
: . . 3 - \

| * Annotate a Predicaté as: :: presolve (autotable);

predicate rank apart(var 1..52: a, var 1..52: b)
= table (dksl] (4 [-1bP mod,133) |in {1522}p1 []);

* Solution are computed
- e predicate replaced by a table constraint o
* Variations
~ * call-based, and instance independent
& wBen’eﬁtSF =
e imprOVe'd solving fime

* automatic reformulation of poor models

-+ Not done mAustraha |

Generate symmetries of small instances

* find which symmetries generalize across instances

Generate candidate model symmetries

- * ask the user or use theorem proving

o Add symmetry breaking (dynamic/ static) to model

Extension to dominance
* separate out objective and / or some constraints
* generate symmetries

* convert to dominance constraints

* Globals Detection

~* Find global constraints which are implied bythe 'model

*+ Use structuré of model to find sub-problems

minizinc.org/globalizer

1.00 bin_packing_capa(capacity, [hostedBy[1,3], hostedBy[2,3], hostedBy[3,3],

‘%’ Generate Candidate glOb al Constraints . B hostedgy[4,3], hostedBy|[5,3], hostedBy[6,3], hostedBy[7,3],

hostedBy[8,3], hostedBy[9,3], hostedBy[10,3]], crew)

10
11 ray [GuestCrews, Ho tB ats, Time] of var 0..1 : visits;
in i

Rank the global candidates by {FR
P 3 % 15 constraint forall (h in HostBoats) (

)
17 sum in Time) (visits[g,h,t]) <= 1)

; ‘@‘ 3 Coverage by SOlutionSI Size Of glObal ig or\:um ::Ln l.Jes rews) (crew[g]*visits[g,h,t]) <= capacity[h])

20 H

* ‘-.Presentthe globals to the user in ranked order

* Was available as a web tool: minizinc.org / globalizer

» nghly 1mportant approach for non—expert modellers

* givesa Way to ”lookup the globals you need for your problems

http://minizinc.org/globalizer

4 L
5T 1) et o

Other Reformulations .

Bounds versus Domam propagatlon

~* we can analyse models to determine that bounds propagators will fail at the same time as
domain |

Multiple reformulations (model portfolios)” |
- * _e.g. map sets to multiple representations: array of bool, array of int

» ‘Essence trys all possible reformulations |

Addmg 1mp11ed constraints

. 51m11ar to symmetry and globaliser: which constraints to add
-_ As’sociatii}e Commutative CSE
* use AC matchmg to find more CSE

* can be rnuch better than normal CSE on the rlght examples

g MiniZinc RS

+ MiniZinc is a modelling language based on reformulation

* essential to supporting varied solvers (linearization)

* Automatic Reformulation is widely used
* language extensions by reformulation (sets, strings)
* improving model flattening (multi-pass, auto tabling)

. recognizing ways to improve a model (symmetry + globals detection)

* Exciting new directions

* “Learning from Learning Solvers” CP2016 showed we can improve our models by
looking at how learmng solvers solve them!

+ “Automatic LBBD solvmg” AAAT2017 how we can create a hybrid MIP / ek
solution to any model that uses the strength of both

reg 3 . 3 2oy v T X SRR e e AP : P v ' . T . £ T AT R e N A Tl T R A M W T S o e £ T
SNk S e . i - e S T : : T s G RS L S B SR TN e N ST S T ST, .
T FE] . T : EoET : : x - ~ . e LT 2 AN g
iy i - , . - » F2Ts Ty i &% . . A : . 5 e N LS A S VAR T \
HAE 3ol e ST \ Is et - , 2 . :) N X A st A .
. $34= e - s f. . . .)) : - - : £ - . R RS |\ : -

S o , - ; : : =3 £ =

7 B : - ':; - $. - - | '

<
<
4 -

~ + Better modelling languages,
S supported by a'ut_omatic reformulation
¢ isacritieali step towards the holy grail
. CP.-is Closer than it was, but we need it to
= = 'ea.s'ier‘to learn -
. W‘better'.analysis/ transformation of models

W: faster solving

% Remember the Holy Graﬂ is (at least in theory) unattamable

| » But that should not stop us reachmg for it

