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N oo ,

~  * MiniZinc is based on model rewriting

+ Predicates: define a new (global) constraint
predicate alldifferent (arraviint] of var ink: x)
= forall(i,j in index set(x) where i < 7J)

(x[1] = x[3])7
< WEssential to treatment of globals
+ solvers use a default decomposition, or

~ *+ replace with their own decomposition or direct constraint
o predicate alldifferantlarrayfint] «of var int: x}}

~+ Advantages: all globals available for all solvers




- MiniZinc Functions

+ [ts also useful to have functions s e
function array{iht] ofovear IRt globat cardingit ey
i (array[int] of var int: x, array[int] of int:
= let { array[index set(v)] of wvar int: '
e sum(l in index set (x)) (x[i] vijl)
e B N o} index oty Paneat sy
-_ in;c;?1

# Common subexpression elimination is better

~* almost a third of the global constraint catalog are functions

. * It also makes the MiniZinc core simpler
'functioh Var int:-abS(var S PR e S :
= s e C SR local constraints
| var —m S | | | . .
constralnt 1nt abs( ,y)
e ; |




% (square) job shop scheduling in MiniZinc

int: size; ‘ : % size of problem
array [1..size,1..size] of int: d; % task durations
int: total = sum(i,j in 1..size) (d[i,jl); % total duration
array [1..size,l..size] of var O..total: s; 7 start times

var 0..total: end; % total end time

~* Mapping a high level model

%# Complex IOOPS predicate no_overlap(var int:sl, int:dl, var int:s2, int:d2) =
sl + dl <= s2 \/ s2 + d2 <= si;
~ constraint
forall(i in 1..size) (
forall(j in 1..size-1) (s[i,j] + d[i,jl <= s[i,j+11) /\
s[i,size] + d[i,size] <= end /\
forall(j,k in 1..size where j < k) (

2 | STt - D s = G no_overlap(s([j,il, d[j,i], slk,i], d[k,i])
+ functions and predicates > :

* deep expressions

)

solve minimize end;

array[0..3] of var 0..14: s;
var 0..14: end;

var bool: bil;

var bool: b2;

var bool: b3;

var bool: b4;

* To a flat model

* variables
* constraints

* objective

constraint
constraint
constraint
constraint

constraint

constraint
constraint

constraint

constraint
constraint

int_lin_le
int_lin_le
int_lin_le
int_lin_le

([1,‘1] ’
CrE =175
Chtsetle
CES=115

int_lin_le_reif ([1,-1],
int_lin_le_reif ([1,-1],
bool_or(bl, b2, true);
int_lin_le_reif([1,-1],
int_lin_le_reif ([1,-1],
bool_or (b3, b4, true);
solve minimize end;

[s[0],
[s[2],
[s[1],
[s[3],
[s[o0],
[s[2],

[s[1],
[s[3],

s[1]1]1,
<311
end 1, -
end ], -
< 7 b e
s[ol], -

5[3]]’ %
S[i]]’ T




Critical Flattening Steps

|+ All standard in language compilers
+ Constant folding
B 'Common Subexpression Elimination
wlvAtWonames for the same thing is deadly for CP

s particularly for learning solvers

o Equahty trackmg

- f W Subst1tut1on/ ehmmatlon of Common names




-
model.mzn

var 0..100: b; % no. of banana
cakes

var 0..100: c; ¢ no. of chocolate
cakes

% flour

constraint 250*b + 200*c <= 4000;
$ bananas

constraint 2*b <= 6;

% sugar

constraint 75*b + 150*c <= 2000;
$ butter

]
constraint 100*b + 150*c <= 500; ranSIatlon
8% cocoa

- X constraint 75*c <= 500;
) % maximize our profit

wMMdlIviauuwvi i
solve maximize 400*b + 450%*c;

|
: output ["no. of banana cakes = ", I I bmz I l - Wil I W iiIWil Wl W ‘
Zres show(b), "\n",

"no. of chocolate cakes =

, show(c), "\n"1;
' \. I J

q . D
: globals.mzn

¥ frontend

prettyprinter

2 \. J

[ alldiff.mzn

J
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ic Reformulation
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~ » MiniZinc mantra

+ your model runs on all solvers

|+ Problem: Set variables are not supported

. -SolutiOh nosets.mzn (200 lines of code)

. ”’.‘A trahslate set variables to arrays of booleans

s cmcial use of'functions to avoid multiple translations
s Con‘}ért.set operationsto functions on arrays

~ * noset variables in the final FlatZinc
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+ MiniZinc extende‘dto include string variab_les_ _

~* not yet released
* String solving not supported by most solvers

- : 0h1YGéc0de.+S

W Map strmgs to existing FlathC
' Translate strings to arrays of mtegers
3 ,» Map constramts on strings to constraints ‘on arrays
- Map string Opefations to opei‘ations on arrays
= Coﬁéaténation, '.reversé,'llength, re.gular, gcc, lexorder

Not that 'uncom'pe'titiv'e wrt to Géc-QdleS




~ Linearization

- # The most important transformation
* allows MiniZinc to run on MIP solvers

* bewarethey_‘"are quite competitive on CP problems
+ Linearization consists of

~ * specialised linear global decompositions

predicate alldifferent (arraylint] of var int:
= forall(j in array dom(x)) |

| (sum(i in index set(x)) (x[i] == 3J) Ly

¢ general linearization by “big M” methods
» spec1a1 treatment of constraints on Var1ables domams (2 er 8

* NEW: Some globals treated as separators e.g. circuit




 Multi Pass Compilation

-+ MiniZinc flattens to FlatZinc

* many decisions made during flattening, e.g
var (2,4 xxwar {2, 435 ys Va2 A s
- constraint all different([x,y,z]);

4

 constraint x+y+z=12 -> y=max([x,y,z]);

~* becomes | _
'-vaf‘{2,4}: Xy o vardo b v uae {004 B oy
constraint all different([x,y,z]);
var 2;.5§;jl)é=1nax([x,y,z])
.1 var:booI;'bO_i_(y ? iO)

. var bool: bl = (xty+z != 12)

" chstraih£ Qr(bO;b1);;_;; __




 Multi Pass Compilation

+ More information = better decisions
var {2,4}:-X;‘Var (2. 4): v: var (205} -;
| constraint'all cditnterent (Ix, g 2l

Yval v il s meR e o o) 5

s beoli b - Ly = 1oy false

- var bool: bl = (xty+s |= 12} true

~constraint ex{kbybi)rs

+ finally
tvar'{2/4}1:X;

L conStRgait o ke




- Multi Pass Compilation

.+ Multi pass compilation

4

Key requirement: variable and expression paths

Gecode first pass: Other solver second pass

- reduces model size: around 5%

- reduces run time for MIP solvers: sometimes 50%

can improve compile time, no worse than double
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| * Annotate a Predicaté as: :: presolve (autotable);

predicate rank apart(var 1..52: a, var 1..52: b)
= table (dksl] (4 [-1bP mod,133) |in {1522}p1 []);

* Solution are computed
- e predicate replaced by a table constraint o
* Variations
~ * call-based, and instance independent
& wBen’eﬁtSF =
e imprOVe'd solving fime

* automatic reformulation of poor models

-+ Not done mAustraha |







Generate symmetries of small instances

* find which symmetries generalize across instances

Generate candidate model symmetries

- * ask the user or use theorem proving

o Add symmetry breaking (dynamic/ static) to model

Extension to dominance
* separate out objective and / or some constraints
* generate symmetries

* convert to dominance constraints




* Globals Detection

~* Find global constraints which are implied bythe 'model

*+ Use structuré of model to find sub-problems

minizinc.org/globalizer

1.00 bin_packing_capa(capacity, [hostedBy[1,3], hostedBy[2,3], hostedBy[3,3],

‘%’ Generate Candidate glOb al Constraints . B hostedgy[4,3], hostedBy|[5,3], hostedBy[6,3], hostedBy[7,3],

hostedBy[8,3], hostedBy[9,3], hostedBy[10,3]], crew)

10
11 ray [GuestCrews, Ho tB ats, Time] of var 0..1 : visits;
in i

# Rank the global candidates by {FR
P 3 % 15 constraint forall (h in HostBoats) (

)
17 sum in Time) (visits[g,h,t]) <= 1)

; ‘@‘ 3 Coverage by SOlutionSI Size Of glObal ig or\:um ::Ln l.Jes rews) (crew[g]*visits[g,h,t]) <= capacity[h])

20 H

* ‘-.Presentthe globals to the user in ranked order

* Was available as a web tool: minizinc.org / globalizer

» nghly 1mportant approach for non—expert modellers

* givesa Way to ”lookup the globals you need for your problems



http://minizinc.org/globalizer

4 L
5T 1 ) et o

Other Reformulations .

Bounds versus Domam propagatlon

~* we can analyse models to determine that bounds propagators will fail at the same time as
domain |

Multiple reformulations (model portfolios)” |
- * _e.g. map sets to multiple representations: array of bool, array of int

» ‘Essence trys all possible reformulations |

Addmg 1mp11ed constraints

. 51m11ar to symmetry and globaliser: which constraints to add
-_ As’sociatii}e Commutative CSE
* use AC matchmg to find more CSE

* can be rnuch better than normal CSE on the rlght examples







g MiniZinc RS

+ MiniZinc is a modelling language based on reformulation

* essential to supporting varied solvers (linearization)

* Automatic Reformulation is widely used
* language extensions by reformulation (sets, strings)
* improving model flattening (multi-pass, auto tabling)

. recognizing ways to improve a model (symmetry + globals detection)

* Exciting new directions

* “Learning from Learning Solvers” CP2016 showed we can improve our models by
looking at how learmng solvers solve them!

+ “Automatic LBBD solvmg” AAAT2017 how we can create a hybrid MIP / ek
solution to any model that uses the strength of both
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~ + Better modelling languages,
S supported by a'ut_omatic reformulation
¢ isacritieali step towards the holy grail
. CP.-is Closer than it was, but we need it to
= = 'ea.s'ier‘to learn -
. W‘better'.analysis/ transformation of models

W: faster solving

% Remember the Holy Graﬂ is (at least in theory) unattamable

| » But that should not stop us reachmg for it




