
A More General Specification Language
Walter W. Wilson
Lockheed Martin

Abstract:  This position paper proposes a type of logic programming called “axiomatic language” as a 

more general  specification language for constraint  programming problems.   Axiomatic  language is 

defined and then used for the SEND+MORE=MONEY problem.  Its extensibility eliminates the need 

for  the  usual  built-in  features  of  CP  and  CLP languages.   But  its  idealistic  emphasis  on  pure 

specification makes its implementation a greater challenge.

1.  Introduction

The Holy Grail of programming can be described as pure specification – you tell the computer what to 

do, not  how to do it.  But what specification language should we use?  This position paper proposes 

“axiomatic language” [http://www.axiomaticlanguage.org/,  Wilson & Lei 12,  Wilson 82] as a more 

general specification language  than constraint programming.  Axiomatic language has the following 

goals:

(1)   pure  specification  –  what,  not  how.   Inputs/outputs  are  defined without  defining the  internal 

processing.

(2)  minimal,  but extensible – as small  as possible without sacrificing expressiveness.  Nothing is 

built-in that can be defined.

(3)  metalanguage – able to define other language features within itself.  The intent is to be able to  

subsume other languages, including constraint programming.

In addition, we have the goal of beauty and elegance for the language.

Section  2 defines axiomatic language.  A solution to the canonical contraint programming problem 

SEND+MORE=MONEY is given in section 3.  Section 4 gives conclusions.

2.  Axiomatic Language

Axiomatic language is based on the idea that the external behavior of a function or program – even an 

interactive program – can be represented by a static infinite set of symbolic expressions that enumerate 

inputs – or sequences of inputs – along with the corresponding outputs.  The language is just a formal 

system for defining these infinite sets.

2.1.  The Core Language

In axiomatic language a finite set of axioms generates a (usually) infinite set of valid expressions.  An 

expression is

http://www.axiomaticlanguage.org/


   an atom – a primitive indivisible element, 

   an expression variable, 

   or a sequence of zero or more expressions and string variables. 

Syntactically, atoms, expression variables, and string variables are represented by symbols beginning 

with  `,  %,  $,  respectively.   A sequence  has its elements  separated  by  blanks  and  enclosed  in 

parentheses.

An axiom consists of a conclusion expression and zero or more condition expressions: 

  <conclu> < <cond1>, …, <condn>.
  <conclu>.             ! an unconditional axiom

Comments start with an exclamation point.

Axioms generate axiom instances by the substitution of values for the expression and string variables. 

An expression variable can be replaced with an arbitrary expression, the same value replacing the same 

variable throughout the axiom.  Similarly, a string variable can be replaced by a string of zero or more  

expressions and string variables.  For example, the axiom

  (`A %x $)< (`B %x %y), (`C $).

has an instance

  (`A `x `u %)< (`B `x ()), (`C `u %).

by the substitution of `x for %x, () for %y, and the string `u % for $.

Axiom instances generate valid expressions by the simple rule that if all the conditions of an axiom 

instance are valid expressions, then the conclusion is a valid expression.  (By default, the conclusion of  

an "unconditional" axiom instance is a valid expression.)  For example, the axioms

  (`a `b).
  ((%) $ $)< (% $).

generate the valid expressions (`a `b), ((`a) `b `b), (((`a)) `b `b `b `b), etc. 

2.2.  Syntax Extensions 

The expressiveness of axiomatic language is enhanced by the addition of some syntax extensions.  A 

single character in single quotes is equivalent to writing an expression that gives the binary code of the 

character using bit atoms: 

  'A'  ==  (`char (`0 `1 `0 `0 `0 `0 `0 `1)) 

A character string in single quotes within a sequence is equivalent to writing those characters separately 

within that sequence: 



  (… 'abc' …)  ==  (… 'a' 'b' 'c' …) 

A character string in double quotes represents the sequence of those characters: 

  "ABC"  ==  ('ABC')  ==  ('A' 'B' 'C') 

Finally, a symbol that does not begin with one of the special characters ` % $ ' " ( ) is syntactic 

shorthand for the following expression that gives the symbol as a character string: 

  ABC  ==  (` "ABC") 

Here  ` is the atom represented by just the backquote.  This convention allows us to define decimal 

number representation, which is not built-in. 

2.3.  Example – Natural Number Arithmetic

Symbolic natural numbers in successor notation can be defined as follows:

  (num (0)).                  ! zero is a natural number
  (num (s $n))< (num ($n)).   ! successor of a number is a number

These axioms generate valid expressions such as (num (s s s 0)), which represents the statement “3 is a  

natural number”.

Here are axioms for the addition and multiplication of these natural numbers:

  (plus %n (0) %n)< (num %n).    ! n + 0 = n
  (plus %1 (s $2) (s $3))<       ! n1 + n2+1 = n3+1 if
    (plus %1 ($2) ($3)).         !   n1 + n2 = n3

  (times %n (0) (0))< (num %n).  ! n * 0 = 0
  (times %1 (s $2) %4)<          ! n1 * n2+1 = n4 if
    (times %1 ($2) %3),          !   n1 * n2 = n3 and
    (plus %1 %3 %4).             !   n1 + n3 = n4

These axioms generate valid expressions such as (plus (s 0) (s s 0) (s s s 0)) meaning “1 + 2 = 3” and 

(times (s s 0) (s 0) (s s 0)) meaning “2 * 1 = 2”.

3.  SEND+MORE=MONEY

This section gives axioms that solve the constraint problem

     S E N D
   + M O R E
   ---------
   M O N E Y



where each letter represents a different digit and letters S and M are not zero.  The problem is to find an 

assignment of digits to letters that makes the addition operation true.  The following “top-level” axiom 

generates valid expressions for all solutions to this problem:

  (solution: $eqn)<
    (== ($eqn) (%S %E %N %D + %M %O %R %E = %M %O %N %E %Y)),
    (equation: $eqn),                       ! equation to solve
    (all digit (%S %E %N %D %M %O %R %Y)),  ! letters are digits
    (different (%S %E %N %D %M %O %R %Y)),  ! digits are distinct
    (/= %S 0), (/= %M 0).                   ! S and M are not 0

This axiom combined with the axioms below generate the unique solution valid expression (solution: 

 9 5 6 7 + 1 0 8 5 = 1 0 6 5 2).

Let us first define the set of decimal digit symbols and their numeric values:

  (digit (` (%dc)) %n)<         ! single-digit symbols are
    (digit_char %dc %n).        ! defined from character digits

  (finite_set digit_char “0123456789”).  ! set of digit characters

  (%set %elem %n)<     ! finite set element and its ordinal value
    (finite_set %set ($1 %elem $2)),
    (length ($1) %n).

  (length () (0)).           ! length of a sequence
  (length (% $) (s $n))<
    (length ($) ($n)).

These axioms generate valid expressions such as (digit_sym 3 (s s s 0)).

Now  we will  give  axioms for  the  equations  to  be  solved.   For  this  problem the  grammar  below 

represents numeric constants as a string of single-digit symbols:

! eval - evaluate a natural number arithmetic expression 
! (eval ( <E> ) <value>) 
!   E = E + T | T       -- Expression 
!   T = T * P | P       -- Term 
!   P = ( E ) | C       -- Primary 
!   C = string of >0 decimal digit symbols  -- Constant 

  (eval ($E) %val)< 
    (eval_E ($E) %val). 



! eval_E - evaluate an Expression:  E = E + T | T 

  (eval_E ($E + $T) %valE+T)< 
    (eval_E ($E) %valE), 
    (eval_T ($T) %valT), 
    (plus %valE %valT %valE+T). 
  (eval_E ($T) %val)< 
    (eval_T ($T) %val). 

! eval_T - evaluate a Term:  T = T * P | P 

  (eval_T ($T * $P) %valT*P)< 
    (eval_T ($T) %valT), 
    (eval_P ($P) %valP), 
    (times %valT %valP %valT*P). 
  (eval_T ($P) %val)< 
    (eval_P ($P) %val). 

! eval_P - evaluate a Primary:  P = (E) | C 

  (eval_P (($E)) %val)<          ! P = ( E )
    (eval_E ($E) %val). 
  (eval_P ($C) %val)<            ! P = C
    (eval_C ($C) %val). 

! eval_C - evaluate Constant:   C = string of >0 single-digit symbols 

  (eval_C (%d) %n)<         ! single digit 
    (digit %d %n).
  (eval_C ($d %d) %n')<     ! multiple digits 
    (eval_C ($d) %n), 
    (digit %d %k), 
    (times %n (s s s s s  s s s s s  0) %10n), 
    (plus %10n %k %n'). 

! equation: - equality between two natural number expressions 

  (equation: $E1 = $E2)< 
    (eval ($E1) %val), 
    (eval ($E2) %val).        ! both sides have the same value 
  

These axioms generate valid expressions such as (equation: 1 2 * (1 + 2) = 3 2 + 4).

The following relation is used to assert that two expressions are identical:

  (== % %).            ! identical expressions



A higher-order definition can be used to assert that all elements of a sequence are members of a set:

! all - a sequence with all its members from a set 
! (all <setname> (..elems..)) 

  (all %set ()). 
  (all %set (%elem $elems))< 
    (%set %elem $), 
    (all %set ($elems)). 

Finally, we need to define inequality between expressions distinguishable by bit atoms and define a 

predicate that asserts that all members of a sequence are distinct:

! /= - inequality between expressions involving bit atoms 

  (/= `0 `1).
  (/= `0 ($)).
  (/= `1 ($)).
  (/= () (% $)).
  (/= %1 %2)< (/= %2 %1).
  (/= (%1 $1) (%2 $2))< (/= %1 %2).
  (/= (%1 $1) (%2 $2))< (/= ($1) ($2)).
  ! -- inequality between distinct chars, char strings, symbols, etc. 

! not_in - element is not in a sequence (given bit-inequality) 

  (not_in %x ()).         ! element is not in empty sequence 
  (not_in %x (% $))<      ! element not in non-empty sequence 
    (/= %x %), 
    (not_in %x ($)). 

! different - elements of sequence are distinct 

  (different ()). 
  (different (%)). 
  (different (% $))< 
    (different ($)), 
    (not_in % ($)). 

An example valid expression is (different (3 2 1)).

4.  Conclusions

The SEND+MORE=MONEY example shows that axiomatic language can express constraint problems 

without all the built-in features of CP and CLP languages.  It is a more general specification language, 

intended for a broader class of problems than just CP.  Axiomatic language is idealistic in providing a 



clean  separation  between  problem specification  and  implementation  algorithm.   It  is  elegant  and 

extreme in its minimality.

Specifications should be smaller,  more readable,  more reusable,  and more correct than algorithmic 

code.  Smaller code size should give greater programmer productivity  [Prechelt 00].  The small size 

and purity of the language should make it well-suited to proof.  Proof would guarantee equivalence 

between the user's specification and the generated efficient program [Pettorossi & Proietti 99].  One 

may also be able to prove assertions about a specification to validate it and this may be more powerful 

than just testing.

The  implementation  of  axiomatic  language  requires  automatically  transforming  specifications  to 

equivalent efficient programs – a grand challenge of computer science [Rich & Waters 88, Goebl 00]. 

Since CP language features are not part of axiomatic language, the transformation system would need 

knowledge to recognize CP problems and then apply the appropriate implementation algorithm.  The 

generality of axiomatic language makes its implementation a more difficult and ambitious Holy Grail 

problem.

References

http://www.axiomaticlanguage.org/

[Goebl 00]  W. Goebl, A Survey and a Categorization Scheme of Automatic Programming Systems, 

GCSE'99, LNCS 1799, pp. 1-15, 2000.

[Pettorossi & Proietti 99]  A. Pettorossi, M. Proietti, Synthesis and transformation of logic programs 

using unfold/fold proofs, J. of Logic Programming 41, pp. 197-230, 1999.

[Prechelt  00]   L.  Prechelt,  An  Empirical  Comparison  of  Seven  Programming  Languages,  IEEE 

Computer, Vol. 33, No. 10, pp. 23-29, 2000.

[Rich  &  Waters  88]   C.  Rich,  R.  Waters,  Automatic  Programming:  Myths  and  Prospects,  IEEE 

Computer, Vol. 21, pp. 40-51, 1988.

[Wilson 82]  W. Wilson, Beyond Prolog: software specification by grammar, SIGPLAN Notices, Vol. 

17, No. 9, pp. 34-43, 1982.

[Wilson & Lei 12]  W. Wilson, Y. Lei, A Tiny Specification Metalanguage, 24th Intl. Conf. on Software 

Engineering and Knowledge Engineering, pp. 486-490, 2012.

http://www.axiomaticlanguage.org/

