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Abstract: This position paper proposes a type of logic programming called “axiomatic language” as a
more general specification language for constraint programming problems. Axiomatic language is
defined and then used for the SEND+MORE=MONEY problem. Its extensibility eliminates the need
for the usual built-in features of CP and CLP languages. But its idealistic emphasis on pure
specification makes its implementation a greater challenge.

1. Introduction

The Holy Grail of programming can be described as pure specification — you tell the computer what to
do, not how to do it. But what specification language should we use? This position paper proposes
“axiomatic language” [http://www.axiomaticlanguage.org/, Wilson & Lei 12, Wilson 82] as a more
general specification language than constraint programming. Axiomatic language has the following
goals:

(1) pure specification — what, not how. Inputs/outputs are defined without defining the internal
processing.

(2) minimal, but extensible — as small as possible without sacrificing expressiveness. Nothing is
built-in that can be defined.

(3) metalanguage — able to define other language features within itself. The intent is to be able to
subsume other languages, including constraint programming.

In addition, we have the goal of beauty and elegance for the language.

Section 2 defines axiomatic language. A solution to the canonical contraint programming problem
SEND+MORE=MONEY is given in section 3. Section 4 gives conclusions.

2. Axiomatic Language

Axiomatic language is based on the idea that the external behavior of a function or program — even an
interactive program — can be represented by a static infinite set of symbolic expressions that enumerate

inputs — or sequences of inputs — along with the corresponding outputs. The language is just a formal
system for defining these infinite sets.

2.1. The Core Language

In axiomatic language a finite set of axioms generates a (usually) infinite set of valid expressions. An
expression is


http://www.axiomaticlanguage.org/

an atom — a primitive indivisible element,
an expression variable,
or a sequence of zero or more expressions and string variables.

Syntactically, atoms, expression variables, and string variables are represented by symbols beginning
with °, %, $, respectively. A sequence has its elements separated by blanks and enclosed in
parentheses.

An axiom consists of a conclusion expression and zero or more condition expressions:

<conclu> < <condl>, .., <condn>.
<conclu>. ! an unconditional axiom

Comments start with an exclamation point.
Axioms generate axiom instances by the substitution of values for the expression and string variables.
An expression variable can be replaced with an arbitrary expression, the same value replacing the same
variable throughout the axiom. Similarly, a string variable can be replaced by a string of zero or more
expressions and string variables. For example, the axiom

("A %x $)< (B %x %y), (CS).
has an instance

(A "x "u %)< (B "x ()), (CC "u %).
by the substitution of “x for %X, () for %y, and the string "u % for $.
Axiom instances generate valid expressions by the simple rule that if all the conditions of an axiom

instance are valid expressions, then the conclusion is a valid expression. (By default, the conclusion of
an "unconditional" axiom instance is a valid expression.) For example, the axioms

V]

“a “b).
(3) $ $)< (% ).

generate the valid expressions (‘a 'b), (("fa) 'b 'b), ((("a)) 'b 'b b "b), etc.
2.2. Syntax Extensions
The expressiveness of axiomatic language is enhanced by the addition of some syntax extensions. A
single character in single quotes is equivalent to writing an expression that gives the binary code of the
character using bit atoms:

'A' == ("char (0 "1 "0 "0 0 "0 "0 "1))

A character string in single quotes within a sequence is equivalent to writing those characters separately
within that sequence:



(.. 'abc' ..) == (.. 'a' 'b' 'c' ..)
A character string in double quotes represents the sequence of those characters:
"ABC" —_—— (IABCI) —_—— (IAI 'B! |C|)

Finally, a symbol that does not begin with one of the special characters =~ % $ ' " ( ) is syntactic
shorthand for the following expression that gives the symbol as a character string:

ABC == (" "ABC")

Here ~ is the atom represented by just the backquote. This convention allows us to define decimal
number representation, which is not built-in.

2.3. Example — Natural Number Arithmetic
Symbolic natural numbers in successor notation can be defined as follows:

(num (0)). ! zero is a natural number
(num (s $n))< (num (S$n)). ! successor of a number is a number

These axioms generate valid expressions such as (num (s s s 0)), which represents the statement “3 is a
natural number”.

Here are axioms for the addition and multiplication of these natural numbers:

(plus %n (0) %n)< (num 3%n). ! n+ 0 =n
(plus %1 (s $2) (s $3))< ! nl + n2+1 = n3+1 if
(plus %1 ($2) ($3)). ! nl + n2 = n3

(times %n (0) (0))< (num %n). !

(times %1 (s $2) %4)< ! nl * n2+1 = n4 if
|
|
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(times %1 ($2) %3), n3 and
(plus %1 %3 %4). nl + n3 = n4

These axioms generate valid expressions such as (plus (s 0) (s s 0) (s s s 0)) meaning “1 + 2 = 3” and
(times (s s 0) (s 0) (s s 0)) meaning “2 * 1 = 2”.

3. SEND+MORE=MONEY

This section gives axioms that solve the constraint problem



where each letter represents a different digit and letters S and M are not zero. The problem is to find an
assignment of digits to letters that makes the addition operation true. The following “top-level” axiom
generates valid expressions for all solutions to this problem:

(solution: S$eqn)<
== ($eqn) (%S $E %N %D + %M %0 %R %E = %M %0 %N %E %Y)),
(equation: $eqn), ! equation to solve
|
|
|

(all digit (%S %E %N %D %M %0 %R %Y)), letters are digits
(different (%S %E %N %D 3M %0 %R 2%Y)), digits are distinct
(/= %S 0), (/= %M 0). S and M are not 0

This axiom combined with the axioms below generate the unique solution valid expression (solution:
9567+1085=10652).

Let us first define the set of decimal digit symbols and their numeric values:

(digit (° (%dc)) %n)< ! single-digit symbols are
(digit_char %dc %n). ! defined from character digits

(finite set digit char “0123456789"”). ! set of digit characters
(%$set %elem %n)< ! finite set element and its ordinal value
(finite set %set ($1 %elem $2)),
(length ($1) %n).
(length () (0)). ! length of a sequence
(length (% $) (s $n))<
(length (§) ($n)).

These axioms generate valid expressions such as (digit_sym 3 (s s s 0)).

Now we will give axioms for the equations to be solved. For this problem the grammar below
represents numeric constants as a string of single-digit symbols:

eval - evaluate a natural number arithmetic expression

|

! (eval ( <E> ) <value>)

! E=E+T| T -- Expression

! T=T=*P | P -- Term

! P=(E) | cC -- Primary

! C = string of >0 decimal digit symbols -- Constant

(eval (SE) %sval)<
(eval E (SE) %val).



! eval E - evaluate an Expression: E =E + T T

(eval E (SE + S$T) %valE+T)<
(eval E (SE) 3%valEk),
(eval T (ST) 3%valT),

(plus %valkE %valT %valE+T).

(eval E (ST) %val)<
(eval T (ST) %val).

! eval T - evaluate a Term: T =T * P P

(eval T (ST * $P) %valT*P)<
(eval T (ST) 3%valT),
(eval P ($P) 3%valp),
(times %valT %valP %valT*P).
(eval T ($P) 3%val)<
(eval P (SP) %val).

! eval P - evaluate a Primary: P = (E) | C
(eval P (($E)) %val)< 1 P=(E)
(eval E ($E) %val).
(eval P ($C) %val)< 1 P=C

(eval C ($C) 3%val).

! eval C - evaluate Constant: C = string of >0 single-digit symbols
(eval C (%d) 3%n)< ! single digit
(digit %d %n).
(eval C ($d %d) %n')< ! multiple digits

(eval C ($d) %n),

(digit %d %k),

(times %n (s s s s s s ssss 0) %10n),
(plus %10n %k %n').

! equation: - equality between two natural number expressions
(equation: S$E1 = $E2)<
(eval (SEl1l) %val),
(eval (SE2) sval). ! both sides have the same value

These axioms generate valid expressions such as (equation: 12 * (1 +2) =3 2 + 4).

The following relation is used to assert that two expressions are identical:

oo
oo

(==

) . ! identical expressions



A higher-order definition can be used to assert that all elements of a sequence are members of a set:

! all - a sequence with all its members from a set
! (all <setname> (..elems..))

(all %set ()).

(all %set (%elem $elems))<
(%$set %elem $),
(all %set (Selems)).

Finally, we need to define inequality between expressions distinguishable by bit atoms and define a
predicate that asserts that all members of a sequence are distinct:

! /= - inequality between expressions involving bit atoms
(/= "0 "1).
(/=70 ($)).
(/="1 (8$))-
(/= () (% 8)).
(/= %1 %2)< (/= %2 %1).

(/= (%1 $1) (%2 $2))< (/= %1 %2).
(/= (81 $1) (%2 $2))< (/= (S1) ($2)).

! -—- inequality between distinct chars, char strings, symbols, etc.

! not in - element is not in a sequence (given bit-inequality)

(not_in %x ()). ! element is not in empty sequence
(not_in %x (% $))< ! element not in non-empty sequence
(/= %x %),

(not_in %x ($)).

! different - elements of sequence are distinct

(different ()).

(different (%)).

(different (% $))<
(different ($)),
(not_in % ($)).

An example valid expression is (different (3 2 1)).

4. Conclusions

The SEND+MORE=MONEY example shows that axiomatic language can express constraint problems
without all the built-in features of CP and CLP languages. It is a more general specification language,
intended for a broader class of problems than just CP. Axiomatic language is idealistic in providing a



clean separation between problem specification and implementation algorithm. It is elegant and
extreme in its minimality.

Specifications should be smaller, more readable, more reusable, and more correct than algorithmic
code. Smaller code size should give greater programmer productivity [Prechelt 00]. The small size
and purity of the language should make it well-suited to proof. Proof would guarantee equivalence
between the user's specification and the generated efficient program [Pettorossi & Proietti 99]. One
may also be able to prove assertions about a specification to validate it and this may be more powerful
than just testing.

The implementation of axiomatic language requires automatically transforming specifications to
equivalent efficient programs — a grand challenge of computer science [Rich & Waters 88, Goebl 00].
Since CP language features are not part of axiomatic language, the transformation system would need
knowledge to recognize CP problems and then apply the appropriate implementation algorithm. The
generality of axiomatic language makes its implementation a more difficult and ambitious Holy Grail
problem.
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