
Automatically Mining and Proving
Generic Invariants on Integer Sequences

Ekaterina Arafailova1, Nicolas Beldiceanu1, and Helmut Simonis2

1 TASC (LS2N), IMT Atlantique, FR – 44307 Nantes, France
FirstName.LastName@imt-atlantique.fr

2 Insight Centre for Data Analytics, University College Cork, Ireland
Helmut.Simonis@insight-centre.org

Abstract. We describe a method for discovering and proving generic
instance-independent invariants linking together several characteristics
of an integer sequence; generic invariants are independent of the inte-
ger values used in the sequence, but are possibly parameterised by the
sequence size. Conjunctions of time-series constraints on the same se-
quence serve as a test case: (1) Experiments show that learning from
small sequence sizes still allows identifying most generic invariants of
bigger sequences; (2) Experiments also indicate that the discovered in-
variants speed up, both, the proof of infeasibility, and more surprisingly,
the generation of solutions for a conjunction of time-series constraints on
a common sequence.

1 Introduction

While artificial intelligence has considered from its very beginning the possibility
to automate the process of scientific discovery [22], relatively little work has been
carried out in this area [24]. One of the main reasons for this situation is that
scientific discovery not only needs to establish conjectures, but also requires to
prove or to invalidate (and fix) them. While the human process to deal with
proofs and refutation has been analysed in the context of mathematics [21],
most computer science work has focused on the first part, namely generating
conjectures both for specific domains like graph theory [16], or for more general
domains [13,23]. The main reason is that the proof part is a key bottleneck,
as it is much more challenging to automate as already observed in [10], even if
programs that could prove theorems in propositional or first order logic already
exist since the fifties [26]. Nowadays there is a renewed interest in proof assistants
like Isabelle [27] or Coq [12]; nevertheless such assistants still require describing
and formalising a proof based on human insight, which is typically demanding
for proving or invalidating a large set of conjectures. More recently, both in the
context of circuit design and program verification, mining Boolean expressions,
and Boolean combinations of numerical inequalities were respectively done in [15]
and [20]. The later uses a theorem prover to verify the proposed invariants.
Another strand of research in automated proving is mining of useful lemmas
from a database of lemmas, that can be further used for speeding up automated

proving of theorems [18,17]. In the context of CP, declarative frameworks have
been proposed for describing propagators, going back to the work on cc(FD)
of [28] to the more recent work of [25]. But in all these approaches, propagators
had to be conceived by humans and were restricted to one single constraint.

Our contribution is a methodology for functional constraints on integer se-
quences [6], which both proposes conjectures and proves them automatically
by using constant-size automata, i.e. automata whose size is independent both
from the sequence size and from the values in the sequence. A functional con-
straint is imposed on an integer sequence X and an integer variable R, which is
functionally determined by X . For a conjunction of two functional constraints
γ1(X , R1) and γ2(X , R2) imposed on the same sequence of n integer variables
X , our method describes sets of infeasible result values pairs for (R1, R2). Each
set of infeasible pairs is described by a formula fi(R1, R2, n) expressed as a con-
junction C1

i ∧ C2
i ∧ . . . ∧ Cki

i of elementary conditions Cj
i between R1,

R2 and n. The learned Boolean function f1 ∨ f2 ∨ · · · ∨ fm represents a set of
infeasible pairs (R1, R2), while its negation ¬f1 ∧ ¬f2 ∧ · · · ∧ ¬fm corresponds
to an implied constraint, which is a universally true Boolean formula, namely

∀X , γ1(X , R1) ∧ γ2(X , R2)⇒
m∧
i=1

¬fi(R1, R2, n) (1)

In order to prove that (1) is universally true we need to show that for every
fi(R1, R2, n), there does not exist an integer sequence of length n yielding R1

(resp. R2) as the value of γ1 (resp. γ2) and satisfying fi(R1, R2, n). The key idea
of our proof scheme is to represent the infinite set of integer sequences satisfying
each elementary condition Cj

i of fi(R1, R2, n) as a constant-size automaton Ai,j .
Then checking that the intersection of all automata Ai,1,Ai,2, . . . ,Ai,ki

is empty
implies that fi(R1, R2, n) is indeed infeasible. Note that such proof scheme is
independent from the sequence size n and does not explore any search space.

We use time-series constraints [1,5] as a running example and a test case.
This invariant generation process is offline: it is done once and for all in order
to build a database of generic invariants. The paper is organised as follows:

– Section 2 provides the required background on time-series constraints and
register automata.

– Section 3 motivates this work with a running example, which illustrates the
need for deriving invariants.

– Section 4 presents our method for deriving invariants for a conjunction of
functional constraints. It starts with an overview of the three phases of our
method, and then details each phase:
1. A generating data phase is detailed in the introduction of Section 4. Its

goal is to generate a dataset, from which we will extract invariants.
2. A mining phase is detailed in Section 4.1. It extracts a hypothesis H of

Boolean functions of the form f1∨f2∨· · ·∨fm from the generated data.
3. A proof phase is detailed in Section 4.2. For every Boolean function fi

(with i ∈ [1,m]) in the extracted hypothesis H, the proof phase either

2

proves its validity for every sequence size, or refute it by generating a
counter example. The counter example is used to modify the current
hypothesis and the process is repeated.

Note that our generated data are noise-free, and that the goal of our work
is not to discover statistical properties of functional constraints, but rather
to extract mathematical theorems, which are always true.

– Section 5 first evaluates the capability of our method to capture most in-
feasible pairs by using the data mining phase only on small sequence size
from 7 to 12, and by checking on the unseen dataset of sequence size from
13 to 24, whether there are uncovered infeasible pairs (R1, R2). Second, it
evaluates the effect of adding the obtained invariants to a recent state of the
art constraint model [3].

2 Background

A time series here is a sequence of integers that represents measurements taken
over time, e.g. the production of a power plant or the temperature in a build-
ing. A time-series constraint [5] γ(X , R) is a functional constraint, where a
sequence of integer variables X is called a time series, and an integer variable R
is called the result variable. For a time series X = 〈X1, X2, . . . , Xn〉, its signature
〈S1, S2, . . . , Sn−1〉 is defined by the following constraints: (Xi < Xi+1 ⇔ Si =
‘<’) ∧ (Xi = Xi+1 ⇔ Si = ‘=’) ∧ (Xi > Xi+1 ⇔ Si = ‘>’) for all i ∈ [1, n− 1].
In this work, we focus only on those constraints such that the value of R de-
pends only on the signature of X , but not on the values in X . For example, the
time series 〈1, 8, 4〉 is equivalent from this point of view to the time series 〈3, 4, 2〉
since both have their signature being 〈<,>〉. Hence, such time series would yield
the same value of R. More precisely, we consider the two following families of
time-series constraints, which both depend on a regular expression σ over the
alphabet Σ = {‘<’, ‘=’, ‘>’}:

– nb_σ(X , R), where R is constrained to be the number of maximal words
wrt inclusion of the language of σ in the signature of X .

– sum_width_σ(X , R), where R is constrained to be the number of elements
of Xi that correspond to the maximal words wrt inclusion of the language
of σ in the signature of X .

Each time-series constraint has a baseline implementation by a register au-
tomaton [19] generated from a transducer [5] that is itself synthesised from a
regular expression [14]. A register automaton A with p > 0 registers is a tu-
ple 〈Q,Σ, δ, q0, I, A, α〉, where Q is the set of states, Σ is the input alphabet,
δ : (Q× Zp)×Σ → Q× Zp is the transition function, q0 ∈ Q is the initial state,
I is a sequence of length p of the initial values of the p registers, A ⊆ Q is the
set of accepting states, and α : Zp → Z is a function, which maps the registers of
an accepting state into an integer. If, by consuming the symbols of a word w in
Σ∗, the automaton A triggers a sequence of transitions from q0, its initial state,

3

s{P ← 0} treturn P

Xi = Xi+1

Xi > Xi+1

Xi < Xi+1

Xi = Xi+1

Xi < Xi+1

Xi > Xi+1

{P ← P + 1}

Fig. 1: Register automaton for nb_peak

to some accepting state where 〈D1, D2, . . . , Dp〉 are the values of the registers at
this stage, then A returns α(D1, D2, . . . , Dp), otherwise it fails.

A time-series constraint γ(X , R), implemented by a register automaton A,
holds iff after consuming the signature of X = 〈X1, X2, . . . , Xn〉, A returns R.

Example 1. Consider the nb_peak(X , R) constraint, where R is restricted to
be the number of peaks in the sequence X . A peak of X is a maximal subsequence
of X whose signature is a word in the language of the ‘<(<|=)* (>|=)*>’ reg-
ular expression. Since T = 〈1, 1, 4, 4, 0, 8, 7, 6, 3, 4〉 has 2 peaks, nb_peak(T , 2)
holds. Figure 1 gives the register automaton A for the nb_peak constraint. The
horizontal arrow coming from nowhere indicates the initial state ofA. States with
double circles are accepting. After consuming the signature 〈=, <,=, >,<,>,>
,>,<〉 of T , A returns 2. 4

3 Motivation and Running Example

Consider a conjunction of time-series constraints γ1(X , R1)∧γ2(X , R2) imposed
on the same sequence of integer variables X . In [3], using the representation of γ1
and γ2 as register automata, they present a method for deriving parameterised
linear inequalities linking the values of R1, R2. Although, in most cases, the
derived inequalities were facet-defining, the experiments revealed that in some
cases, even when using these invariants, the solver could still take a lot of time
to find a feasible solution or to prove infeasibility. This happens because of some
infeasible combinations of values of the result variables that were located inside
the convex hull of all feasible solutions. The following example illustrates such a
situation.

Example 2. Consider the sum_width_decreasing_sequence(X , R1) and the
sum_width_zigzag(X , R2) time-series constraints on the same sequence X ,
where a decreasing sequence (resp. a zigzag) in X is a subsequence of X cor-
responding to an inclusion-wise maximal occurrence of ‘(>(>|=)*)*>’ (resp.
‘(<>)+ < (> |ε) | (><)+ > (< |ε)’) in the signature of X , and the width of such
a subsequence is the number of its elements. Then R1 (resp. R2) is the sum of the
widths of decreasing sequences (resp. zigzags) in X . The sum_width_zigzag

4

time-series constraint can be used for limiting the widths of zigzags occurring
in the production curve of a power plant [7]. For the sequence size of X in
{9, 10, 11, 12}, Figure 2 represents feasible pairs of (R1, R2) as blue squares, and
infeasible pairs lying inside the convex hull of feasible (blue) points as red circles.
The convex hull contains a significant number of infeasible (red) points, which
we want to characterise automatically. 4

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Size: 9

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Size: 10

0 2 4 6 8 10 12

0

2

4

6

8

10

12

sum_width_decreasing_sequence

Size: 11

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

Size: 12

Fig. 2: Blue squares represent feasible combinations of the result vari-
ables R1, R2 of the sum_width_decreasing_sequence(X , R1) and the
sum_width_zigzag(X , R2) time-series constraints on the same sequence X
whose length is in {9, 10, 11, 12}; red circles represent infeasible points inside the
convex hull of feasible points, while red straight lines depict the facets of the
convex hull of feasible points.

Our work focusses on pairs of constraints for the following reasons:

– Given a set of constraints, we want to capture the interaction of constraints
without considering an exponential number of subsets of constraints, i.e. the
idea is rather to focus on subsets of size 2.

– As we will see in the next section, our technique first computes the convex
hull of the set of feasible points. When considering three or more constraints,
computing the convex hull of a set of points becomes a difficult task since
the number of facets can be exponential.

4 Discovering and Proving Invariants

Consider a conjunction of functional constraints γ1(X , R1) and γ2(X , R2) im-
posed on the same sequence of integer variables X . This work focuses on au-
tomatically extracting and proving invariants that characterise some subsets of
infeasible points that are all located inside the convex hull of feasible combina-
tions of R1 and R2. Our approach uses three sequential phases.
[generating data phase] The first phase of our method is a preparatory work,
namely generating data. For each sequence length n in [7, 12], we generate all
feasible combinations of the values of R1 and R2. For each of the 6 lengths,
(i) we compute the convex hull of feasible points of R1 and R2 using Graham’s

5

scan, and (ii) we detect the set I of infeasible combinations of R1 and R2 in this
convex hull.
[mining phase] The second phase, called themining phase, consists of extracting
a hypothesis H describing the set of infeasible points I from the generated data.
We represent this hypothesis as a disjunction of Boolean functions fi(R1, R2, n).
The mining phase is described in Section 4.1.
[proof phase] The third phase, called the proof phase, consists of refining
the discovered hypothesis H by validating some Boolean functions fi and by
refuting and eliminating others using constant-size automata without registers.
A refined hypothesis, which is proved to be correct in the general case, i.e. for
any sequence length, is called a description of the set I. The proof phase is
described in Section 4.2.

4.1 Mining Phase

Consider a conjunction of two functional constraints γ1(X , R1) and γ2(X , R2),
imposed on the same sequence X . This section shows how to extract a hypothesis
in the form of a disjunction of Boolean functions, describing the infeasible com-
binations of values for R1, R2 that are located within the convex hull of feasible
pairs.

There is a number of works on learning a disjunction of predicates [8], and
some special case, where disjunction corresponds to a geometric concept [9,11].
Usually, the learner interacts with an oracle through various types of queries or
with the user by receiving positive and negative examples; the learner tries to
minimise the number of such interactions to speed up convergence.

In our case, the input data consists of the set of positive, called infeasible, and
negative, called feasible, examples, which is finite and which is completely pro-
duced by our generating phase. This allows exploring all possible inputs without
any interaction.

We now present the components of our mining phase:

– First, we describe our dataset, which consists of feasible and infeasible pairs
of the result values R1 and R2.

– Second, we define the space of concepts, hypotheses, we can potentially ex-
tract from our dataset.

– Third, we outline the target hypothesis for functional constraints, i.e. what
we are searching for.

– Finally, we briefly describe the algorithm used for finding the target hypoth-
esis.

Input Dataset We represent our generated data as the union of two sets of
triples D− (resp. D+) called the set of feasible (resp. infeasible) examples, such
that:

– For every (k, p1, p2) (with k ∈ [7, 12]) in D−, there exists at least one integer
sequence of length k that yields p1 and p2 as the values of R1 and R2,
respectively.

6

– For every (k, p1, p2) (with k ∈ [7, 12]) in D+,
(i) there does not exist any integer sequence of length k that would yield p1

and p2 as the values of R1 and R2, respectively.
(ii) (p1, p2) is located within the convex hull of feasible values of R1 and R2.

Space of Hypotheses Every element of our hypothesis space is a disjunction
of Boolean functions from a finite predefined set H. Each element of H is a con-
junction C1 ∧ C2 ∧ · · · ∧ Cp with every Ci, called an atomic relation, where the
main atomic relations are

(i) n ≥ c,
(ii) n mod c = d,
(iii) Rj mod c = d,
(iv) Rj ≥ c,

(v) Rj ≤ up(Rj , n)− c,
(vi) Rj = c,
(vii) Rj = up(Rj , n)− c,
(viii) Rj = c ·Rk + d,

with j 6= k being in {1, 2}, with c and d being natural numbers, and up(Rj , n) be-
ing the maximum possible value ofRj given the constraint γj(〈X1, X2, . . . , Xn〉, Rj).
The intuition of these atomic relations is now explained:

– (i) stands from the fact that many invariants are only valid for a big enough
sequence size.

– (ii) is motivated by the fact that the parity of the sequence size is sometimes
relevant.

– (iii) is justified by the fact that the parity of Rj can come into play.
– (iv) and (v) are related to the fact that infeasible points can be located on

a ray or on an interval.
– (vi) and (vii) are respectively linked to the fact that quite often infeasible

points inside the convex hull are very close to the minimum or the maximum
values [4] of Rj (with j ∈ [1, 2]), i.e. c is a very small constant, typically 0
or 1.

– (viii) denotes the fact that some invariants correspond to a linear combina-
tion of Rj and Rk.

Target Hypothesis

Definition 1. A Boolean function of H is consistent wrt a dataset D iff it is
true for at least one infeasible example of D, and false for every feasible example
of D.

For example, R1 = R2 ∧ R1 mod 2 = 1 is consistent with the dataset of Figure 2,
but the two Boolean functions R1 = 13 and R1 = R2 are not.

Definition 2. A Boolean function of H is universally true if it is true for any
integer sequence of any length.

Definition 3. The target hypothesis H is the disjunction of all Boolean func-
tions of H consistent with D.

7

Note that in the target hypothesis some Boolean functions can be subsumed by
other Boolean functions. We cannot do the subsumption analysis at this point
since we do not yet know which formulae are true.

Mining Algorithm Our mining algorithm filters out all the Boolean functions
not consistent with our dataset and returns the disjunction of the remaining
Boolean functions. Note that the mining algorithm ignores Boolean functions
involving the atomic relation (i) n ≥ c, which is handled in the proof phase.
Remember that we run the algorithm only on the limited dataset D, i.e. the
data set generated from the integer sequences of small lengths, which we will be
motivated in Section 5.

4.2 Proof Phase

After extracting from D, the target hypothesis H = f1 ∨ f2 ∨ · · · ∨ fm charac-
terising subsets of infeasible points that are all located inside the convex hull of
feasible combinations of R1 and R2, we refine this hypothesis, by keeping only
universally true Boolean functions fi. To do that, the main result of this section,
Theorem 1, gives a necessary and sufficient condition for a Boolean function f
to be universally true, provided that there exists constant-size automata associ-
ated with the atomic relations in f . We will further show how to generate such
automata for two types of atomic relations.

Before presenting our proof technique, we look at the structure of the hy-
pothesis H. Every Boolean function f in H is of the form f = C1 ∧C2 ∧ · · · ∧Cp

and can be classified into one of the two following categories:

– Independent Boolean Function means that every Ci is an independent
atomic relation, i.e. depends either on R1 or R2, but not on both. For in-
stance, R1 = up(R1, n)∧R2 mod 2 = 1 is an independent Boolean function.

– Dependent Boolean Function means that there exists at least one Ci

that is a dependent atomic relation, i.e. mentions both R1 and R2. For in-
stance, R1 mod 2 = 1 ∧R1 = R2 + 1 is a dependent Boolean function.

We first focus on independent Boolean functions, i.e. the ones containing
relations from (i) to (vii), and give a necessary and sufficient condition for proving
that an independent Boolean function is universally true. Then for a dependent
Boolean function containing relation (viii), we describe a method for verifying
that the considered dependent Boolean function is universally true.

Proof of Independent Boolean Functions Since most atomic relations are
independent, i.e. cases (i) to (vii), this paper focuses primarily on a necessary
and sufficient condition for proving that an independent Boolean function is
universally true.

Definition 4. For an atomic relation C, the set of supporting signatures TC is
the set of words in Σ∗ such that, for every word in TC there exists an integer
sequence satisfying C, whose signature is this word.

8

Definition 5. For an independent Boolean function f = C1 ∧ C2 ∧ · · · ∧ Cp of

S, we define the set of supporting signatures Tf as
p⋂

i=1

TCi
.

A Boolean function f is universally true iff it describes infeasible combina-
tions of R1 and R2 for any sequence length, and thus the set Tf is empty.

For any atomic relation C from (i) to (vii), i.e. independent atomic relation,
the corresponding set of supporting signatures is represented as the language of
a constant-size automaton without registers AC . Constant size means that the
number of states of this automaton does not depend on the length of the input
integer sequence. For a Boolean function f = C1 ∧ C2 ∧ · · · ∧ Cp, Tf is simply
the set of signatures recognised by the automaton obtained after intersecting all
ACi

with i in [1, p]. This provides a necessary and sufficient condition for proving
that a Boolean function f is universally true.

Theorem 1. Consider two functional constraints γ1(X , R1) and γ1(X , R2) on
the same sequence X , and a Boolean function f(R1, R2, n) = C1 ∧C2 ∧ · · · ∧Cp

such that for every Ci there exists a constant-size automaton without registers
ACi

. The function f is universally true iff the intersection of all automata for
ACi (with i ∈ [1, p]) is empty.

The proof of Theorem 1 follows from Definitions 4 and 5.

For some Boolean function f = C1 ∧C2 ∧ · · · ∧Cp, the set Tf =
p⋂

i=1

TCi may

not be empty, but finite. In this case, we compute the length c of the longest
signature in Tf , and obtain a new Boolean function f ′ = f ∧ n ≥ c + 1. By
construction, the set Tf ′ is empty, thus f ′ is universally true.

Generation of a Constant-Size Automaton for Independent Atomic
Relations Generating a constant-size automaton for atomic relations that im-
pose a restriction like (i) or (ii) on the sequence length is straightforward. For
space reason we now focus on the generation of constant-size automata for atomic
relations of the form (vi) Rj = c and (iii) Rj mod c = d from register automata
of γ1 and γ2. Let us start with an illustrating example.

Example 3. Consider the sum_width_decreasing_sequence(X , R) time-
series constraint, whose register automaton is given in Part (A) of Figure 3, and
the atomic relation C defined by R = 3. The minimal automaton representing
the atomic relation C is given in Part (C) of Figure 3. 4

In order to generate constant-size automata for the atomic relations (iii)
and (iv) we require that for each γj there exists a register automaton Aj with
at most two registers A1 and A2 satisfying the following conditions:

1. The initial values of both registers are 0.
2. On every transition of Aj , A1 is either incremented by a natural number, or

by the current value of A2 plus a natural number. In this latter case A2 is
reset to 0.

9

s

{
D ← 0
R← 0

}

t

re
tu

rn
R >{

D ← 0
R← R + 2

}

<,=

>{
D ← 0
R← R + D + 1

}=
{D ← D + 1}

<
{D ← 0}

(A)

s0,0

t2,0

t3,4

t3,0

s3,3

s3,0

t3,1

t3,2

<,=

>

>

<

<,=

=

=

==

<

<<<

=

(B)

a

b c

<,=

>

>
<,=

(C)

Fig. 3: (A) Register automaton for sum_width_decreasing_sequence(X , R);
(B) Automaton for the atomic relation R = 3 and (C) corresponding minimised
automaton.

3. On every transition of Aj , A2 is either incremented by a natural number, or
reset to 0.

4. The acceptance function of Aj returns the last value of A1.

For every nb_σ and sum_width_σ time-series constraint, there exists a
register automaton [2] satisfying Conditions (1)–(4).

We now explain how to construct constant-size automata for the relations
(vi) Rj = c and (iii) Rj mod c = d when Aj satisfies Conditions (1)–(4).

Construction of Constant-Size Automata for R = c. Consider the atomic
relation C defined by R = c. The automaton AC is built from A in the following
way:
[states of AC] For every state q of A, there are c · (c+ 1) states in AC named
qi1,i2 (with i1 ∈ [0, c], i2 ∈ [0, c + 1]), i.e. each state of AC corresponds to a
state of A labelled by the potential values of the registers A1 and A2, with the
restriction that values of A2 that are strictly greater than c are all mapped to
c+ 1.

[initial state of AC] Since both registers A1 and A2 of A are initialised to 0,
the state q0,0 is the initial state of AC .

[accepting states of AC] All states where the returned value A1 is set to the
expected value c are accepting states of AC . Consequently, all states of the form
qc,i2 (with i2 ∈ [0, c+ 1]) are accepting.

[transitions of AC]

– WithinAC , there is a transition from qi1,i2 to q∗i∗1 ,i∗2 (with i1, i∗1, i∗2 ∈ [0, c], i2 ∈
[0, c+1]) labelled with s, a letter in the input alphabet of A, if there exists in
A a transition from q to q∗ labelled with s such that, when A1 and A2 have
values i1 and i2, A1 and A2 are respectively set to i∗1 and i∗2 when triggering
that transition.

– Within AC , there is a transition from qi1,i2 to q∗i∗1 ,c+1 labelled with s, a
letter in the input alphabet of A, if there exists in A a transition from q to
q∗ labelled with s such that, when A1 and A2 have values i1 and i2, A1 and
A2 are respectively set to i∗1 and i∗2 > c when triggering that transition.

10

It is easy to see that when A satisfies Conditions (1)–(4) the set of signatures
recognised by the constructed automaton AC is indeed the set of supporting
signatures TC .

Turning back to Example 3, Part (B) of Figure 3 shows the automaton built
by the previous algorithm for the relation R = 3, ignoring isolated states.

Construction of a Constant-Size Automaton for R mod c = d. Consider
the atomic relation C defined by R mod c = d. The automaton AC is built from
A in the following way:
[states of AC] For every state q of A, there are c2 states in AC named qi1,i2
(with i1, i2 ∈ {0, 1, . . . , c− 1}), i.e. each state of AC corresponds to a state of A
labelled by the potential values of remainder of the registers A1 and A2.

[initial state of AC] Since both registers A1 and A2 of A are initialised to 0,
the state q0,0 is the initial state of AC .

[accepting states of AC] All states where the remainder of the returned
value A1 is set to the expected value d are accepting states of AC . Consequently,
all states of the form qd,i2 (with i2 ∈ {0, 1, . . . , c− 1}) are accepting.

[transitions of AC] Within AC , there is a transition from qi1,i2 to q∗i∗1 ,i∗2 (with
i1, i2, i

∗
1, i
∗
2 ∈ {0, 1, . . . , c − 1}) labelled with s, a letter in the input alphabet of

A, if there exists in A a transition from q to q∗ labelled with s such that, when
the remainder modulo c of A1 (resp. A2) is i1 (resp. i2), the remainder modulo
c of A1 (resp. A2) becomes i∗1 (resp. i∗2) after triggering that transition.

It is easy to see that when A satisfies Conditions (1)–(4) the set of signatures
recognised by the constructed automaton AC is indeed TC .

Proof of Dependent Boolean Functions Some dependent Boolean func-
tions, i.e. case (viii), can be handled by adapting the technique for generating
linear invariants described in [3].

Consider two constraints γ1(X , R1) and γ2(X , R2) on the same integer se-
quence X such that, for both γ1 and γ2, the method of [3] for generating linear
invariants applies. We present here a method for verifying that the dependent
Boolean function R1 − d ·R2 = 1, with d being either 1 or 2, is universally true.
Note that such Boolean function was extracted during the mining phase for 17
pairs of time-series constraints.

We prove by contradiction that the corresponding Boolean function is uni-
versally true. Our proof consists of three following steps:

1. Assumption. Assume that there exists an integer sequence X such that
R1 − d ·R2 = 1.

2. Implication for the parity of R1 and d ·R2. When R1−d ·R2 = 1, then
R1 and d ·R2 have a different parity.

3. Obtaining a contradiction. Since R1 and d · R2 must have different
parity, there exists a value of b that is either 0 or 1 such that the conjunction
R1 − d · R2 = 1 ∧ R1 mod 2 = b ∧ d · R2 mod 2 = 1 − b holds. In order

11

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Size: 9

¬ R1 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Size: 9

­ R2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Size: 9

®
R1 = 3 ∧
R2 ≥ 2

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Size: 9

¯
R1 = 5 ∧
R2 ≥ 4

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Size: 9

°
R1 = up(n,R2) ∧
R2 mod 2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Size: 9

±
R1 = R2 ∧
R2 mod 2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Size: 10

²
n mod 2 = 0 ∧
R1 = up(R1, n)− 1 ∧
R2 = up(R2, n)

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

Size: 12

²
n mod 2 = 0 ∧
R1 = up(R1, n)− 1 ∧
R2 = up(R2, n)

Fig. 4: Seven groups of infeasible combinations of R1 and R2, where R1 and R2

are, respectively, constrained by sum_width_decreasing_sequence(X , R1)
and sum_width_zigzag(X , R2) on the same sequence X of length 9 (all plots
on top and the two plots on bottom left) and of lengths 10 and 12 (the two plots
on bottom right).

to prove that R1 − d · R2 = 1 is infeasible, for either value of parameter b,
we need to show that either the obtained conjunction is infeasible, e.g. when
d = 2 and b is 0, or the method of [3] produces an invariant R1 − d ·R2 ≥ c
with c being strictly greater than 1.

If at this third step of our proof method the considered conjunction is feasible,
and the desired invariant R1−d ·R2 ≥ c was not obtained, then we cannot draw
any conclusion about the infeasibility of R1 − d ·R2 = 1.

In practice, for the 17 pairs of time-series constraints, for which we extracted
the Boolean function R1 − d · R2 = 1, the method of [3] did indeed generate a
desired linear invariant, which proved that the considered Boolean function is
universally true.

Example 4. Consider the sum_width_decreasing_sequence(X , R1) and the
sum_width_zigzag(X , R2) time-series constraints on the same sequence X ,
introduced in Example 2. For this conjunction, we now describe the result of the
mining and the proving phases of our method as well as the dominance filtering,
i.e. discarding Boolean functions subsumed by some other Boolean function.

– During the mining phase we extracted a disjunction of 156 Boolean functions.
Most Boolean functions, even if they are true, are redundant. For example,

12

the Boolean function R1 = 1 ∧ R2 = 1 is subsumed by R1 = 1, and thus can
be discarded. However, at this point we cannot do the dominance filtering
since we do not yet know which Boolean functions are universally true.

– During the proof phase we proved that 95 out of the extracted 156 Boolean
functions are universally true.

– Finally, after the dominance filtering of the 95 proved Boolean functions we
obtain the disjunction of the following seven Boolean functions:

¬ R1 = 1 ­ R2 = 1
® R1 = 5 ∧ R2 ≥ 4 ¯ R1 = 3 ∧ R2 ≥ 1
° R1 = up(R1, n) ∧ R2 mod 2 = 1 ± R1 mod 2 = 1 ∧ R1 = R2

² n mod 2 = 0 ∧ R1 = up(R1, n)− 1 ∧ R2 = up(R2, n)

All four upper plots and the two lower plots on the left of Figure 4 contain
the groups of infeasible points corresponding to the Boolean functions from ¬
to ± for n being 9. The two lower plots on the right of Figure 4 contain the
infeasible points corresponding to the ² Boolean function for n being 10 and 12,
respectively.

The Boolean functions from ¬ to ° and ² were proved by intersecting the
automata for the atomic relations in these Boolean functions. For example, the
automata for both atomic relations of the ² are given in Figure 5. One can take
their intersection to check it is empty.

In order to prove ±, we consider the conjunction of three constraints, namely
R1 mod 2 = 1, sum_width_decreasing_sequence, and sum_width_zigzag.
Each of the three constraints can be presented by an automaton with or without
registers satisfying the required properties of the method of [3], which generates
for this conjunction the invariant R1 ≥ R2+2. This proves that ± is a universally
true Boolean function.

We now give an interpretation of five of those Boolean functions:

– ¬ and ­ means that, in the languages of decreasing_sequence and
zigzag, respectively, there is no word consisting of one letter.

– ° means that, when a time series yields up(R1, n) as the value of R1, every
occurrence of zigzag in its signature must start and end with ‘>’, and the
width of every word in zigzag starting and ending with the same letter is
even.

– ± is related to the fact that every word in the language of zigzag contains
at least one word of the language of decreasing_sequence as a factor,
and every such factor is of even length.

– ² means that, when a time series yields up(R2, n) as the value of R2, then
its signature is a word in the language of zigzag, and every occurrence of
decreasing_sequence is of even length, and thus R1 must be even. At
the same time, up(R1, n)− 1 = n− 1 is odd, when n is even. 4

5 Evaluation

Consider a conjunction of two time-series constraints γ1(X,R1) and γ2(X,R2),
imposed on the same sequence X = 〈X1, X2, . . . , Xn〉. After performing the

13

>
>

< >

= >

=

(A)

s r=

>

<

>

<

<

>

<

>

>

<

<
>

>
<

<

>

>

<

=

>

<

>

<

<

>

<

>

>

<

s

=

s

=

s

=

s

=

r

=

r

=

r

=

r

=

s

=

s

=

r

=

r

=

(B)

Fig. 5: (A) Automaton for the R1 = up(R1, n) atomic relation, where R1

is constrained by sum_width_decreasing_sequence(X , R1). (B) Automa-
ton for the R2 mod 2 = 1 atomic relation, where R2 is constrained by
sum_width_zigzag(X , R2).

mining and proof phases, we obtain a disjunction describing a subset of infeasible
combinations of R1 and R2. Recall that this disjunction is called a description
of infeasible set. The exploitation phase includes the two following procedures:

First, we filter the Boolean functions in the obtained description of infeasible
set in order to obtain a non-dominated description, i.e. a disjunction of Boolean
functions that are mutually non subsumable.

Second, we evaluate the obtained description of infeasible points from two
perspectives:

– While the description of infeasible set is correct for any sequence size, it is
unclear whether learning from small sequence size allows to also identify all
infeasible combinations of R1 and R2 for larger sequence sizes. We investigate
this question empirically by comparing the set of infeasible combinations of
R1 and R2 learned by only using small sequence sizes (from 7 to 12) to the set
of infeasible combinations of R1 and R2 generated by a systematic procedure
for larger sequence sizes (from 13 to 24). Such choice was motivated by the
following observations:
• Learning from very small sequence sizes does not make sense since the

corresponding convex hulls are too small: many infeasible points do not
show up with very small sequence sizes.

• Learning from very few sequence sizes, e.g. two, is not enough since some
infeasible points within the convex hull are only present when n mod k =
r with r ∈ [0, k − 1] for some small k greater than 2.

• In practice generating the data for sizes 7 to 12 was very fast, while
generating additional data from 13 to 24 took more than one month.

– We evaluate the impact of our learned description of infeasible set in terms of
time and number of backtracks for finding a solution or proving infeasibility
for a conjunction of time-series constraints.

We consider all pairs of constraints for which infeasible points exist in the
convex hull of feasible points, and for which we have the full baseline implemen-

14

tation. For the 303 pairs considered, there are 68,145 feasible points and 12,103
infeasible points in the training set. From these points we generate 16,310 hy-
potheses, of which 11,827 are proven. Removing dominated invariants, we are
left with 517 non-dominated, proven invariants which are then used in the eval-
uation. It takes 10 minutes 29 seconds to create once and for all our database
of invariants, i.e. to generate the hypotheses, to prove them, and to find the
non-dominated set. Each generated invariant consists typically of a disjunction
of no more than five conditions.

We use the generated invariants in our test data (sizes 13 to 24), by adding
them to a baseline consisting of the previous state-of-the-art implementation
based on [3]. Table 1 compares the baseline to our improved method.

Table 1: Comparing the state-of-the-art baseline
and the baseline with the generated invariants
Measure Case Success Failure
Backtrack Baseline 289,321,218 465,049,474
Backtrack New 190,452,242 1,954
Backtrack %New/Base 65.83 0.00042
Time Baseline 107,630 89,800
Time New 78,521 0.7
Time %New/Base 72.95 0.00078

We checked independently
that for the test data set
there are 559,224 feasible
points, and 50,823 infeasible
points. For each test case,
we either find the first fea-
sible solution, or show that
no solution exists. The re-
sults show that only 130 in-
feasible points (0.26 % of all
infeasible points) in the test
set are not covered by one of
the generated hypotheses.

As we can see, the gener-
ated invariants cover the infeasible points nearly perfectly, reducing the time
spent from 89,800 seconds to less than one second. Perhaps more surprisingly,
the generated invariants also help with feasible cases, by removing infeasible
subtrees from the search of feasible solutions. The number of backtracks for the
feasible cases is reduced by one third, and the time for finding the solutions is
reduced by 27%.

6 Conclusion

For time series on integer sequences, this paper proposes a systematic approach
to extract and prove invariants denoting infeasible combinations of pairs of se-
quence characteristics. To avoid being instance specific these invariants are pa-
rameterised by the sequence size.

The approach relies on the fact that infeasible pairs are quite often located
at a small distance from the envelope of the convex hull of all feasible pairs, and
can therefore be described by intersecting constant-size finite automata.

While we still use generated datasets to extract our invariants, this line of
work contributes to explainable AI, since each obtained proved invariant can be
fully concisely described as a conjunction of constant-size structured automata.

15

References

1. Arafailova, E., Beldiceanu, N., Douence, R., Carlsson, M., Flener, P., Rodríguez,
M.A.F., Pearson, J., Simonis, H.: Global constraint catalog, volume ii, time-series
constraints. CoRR abs/1609.08925 (2016), http://arxiv.org/abs/1609.08925

2. Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodríguez, M.A.,
Pearson, J., Simonis, H.: Time-series constraints: Improvements and application in
CP and MIP contexts. In: Quimper, C.G. (ed.) CP-AI-OR 2016. LNCS, vol. 9676,
pp. 18–34. Springer (2016)

3. Arafailova, E., Beldiceanu, N., Simonis, H.: Generating linear invariants for a con-
junction of automata constraints. In: Beck, C. (ed.) Principles and Practice of
Constraint Programming - CP 2017, 23rd International Conference, CP 2017. pp.
21–37. LNCS, Springer International Publishing (2017)

4. Arafailova, E., Beldiceanu, N., Simonis, H.: Deriving generic bounds for time-series
constraints based on regular expressions characteristics. Constraints 23(1), 44–86
(Jan 2018). https://doi.org/10.1007/s10601-017-9276-z

5. Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transduc-
ers for describing and synthesising structural time-series constraints. Constraints
21(1), 22–40 (January 2016), journal fast track of CP 2015: summary on p. 723 of
LNCS 9255, Springer, 2015

6. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On the reification of global
constraints. Constraints 18(1), 1–6 (January 2013)

7. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating so-
lutions for the EDF unit commitment problem with the ModelSeeker. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer (2013)

8. Bshouty, N.H., Drachsler-Cohen, D., Vechev, M., Yahav, E.: Learning disjunctions
of predicates. In: Kale, S., Shamir, O. (eds.) Proceedings of the 2017 Conference on
Learning Theory. Proceedings of Machine Learning Research, vol. 65, pp. 346–369.
PMLR, Amsterdam, Netherlands (07–10 Jul 2017)

9. Bshouty, N.H., Goldberg, P.W., Goldman, S.A., Mathias, H.D.: Exact learning
of discretized geometric concepts. SIAM J. Comput. 28(2), 674–699 (Feb 1999).
https://doi.org/10.1137/S0097539794274246

10. Charnley, J.W., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: ECAI 2006. Frontiers in AI and Applications, vol. 141, pp. 73–77. IOS Press
(2006)

11. Chen, Z., Ameur, F.: The learnability of unions of two rectangles in the two-
dimensional discretized space. Journal of Computer and System Sciences 59(1), 70
– 83 (1999). https://doi.org/10.1006/jcss.1999.1621

12. Coquand, T., Huet, G.P.: Constructions: A higher order proof system for mechaniz-
ing mathematics. In: Buchberger, B. (ed.) EUROCAL ’85, European Conference on
Computer Algebra, Linz, Austria, April 1-3, 1985, Proceedings Volume 1: Invited
Lectures. LNCS, vol. 203, pp. 151–184. Springer (1985)

13. Fajtlowicz, S.: On Conjectures of Graffiti. Annals of Discrete Mathematics 38,
113–118 (1988)

14. Francisco Rodríguez, M.A., Flener, P., Pearson, J.: Automatic generation of de-
scriptions of time-series constraints. In: Brodsky, A. (ed.) ICTAI 2017. IEEE Com-
puter Society (2017)

15. Goel, N., Hsiao, M.S., Ramakrishnan, N., Zaki, M.J.: Mining Complex Boolean
Expressions for Sequential Equivalence Checking. In: Proceedings of the 19th IEEE
Asian Test Symposium, ATS 2010, 1-4 December 2010, Shanghai, China. pp. 442–
447. IEEE Computer Society (2010)

16

http://arxiv.org/abs/1609.08925
https://doi.org/10.1007/s10601-017-9276-z
https://doi.org/10.1137/S0097539794274246
https://doi.org/10.1006/jcss.1999.1621

16. Hansen, P., Caporossi, G.: Autographix: An automated system for finding conjec-
tures in graph theory. Electronic Notes in Discrete Mathematics 5, 158–161 (2000)

17. Kaliszyk, C., Chollet, F., Szegedy, C.: Holstep: a machine learning dataset for
higher-order logic theorem proving (2017)

18. Kaliszyk, C., Urban, J.: Lemma mining over hol light. In: McMillan, K., Middel-
dorp, A., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and
Reasoning. pp. 503–517. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

19. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

20. Krishna, S., Puhrsch, C., Wies, T.: Learning Invariants using Decision Trees. CoRR
abs/1501.04725 (2015), http://arxiv.org/abs/1501.04725

21. Lakatos, I.: Proofs and Refutations. Cambridge University Press (1976)
22. Langley, P.W., Simon, H.A., Bradshaw, G., Zytkow, J.M.: Scientific Discovery –

Computational Explorations of the Creative Process. MIT Press (1987)
23. Larson, C.E., Cleemput, N.V.: Automated conjecturing I: Fajtlowicz’s Dalmatian

heuristic revisited. Artif. Intell. 231, 17–38 (2016)
24. Lenat, D.B.: On automated scientific theory formation: a case study using the AM

program. Machine intelligence 9, 251–286 (1979)
25. Monette, J.N., Flener, P., Pearson, J.: A propagator design framework for con-

straints over sequences. In: Brodley, C.E., Stone, P. (eds.) AAAI 2014. pp. 2710–
2716. AAAI Press (2014)

26. Newell, A., Simon, H.A.: The logic theory machine – A complex information pro-
cessing system. IRE Transactions on Information Theory 2(3), 61–79 (1956)

27. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning
5(3), 363–397 (1989)

28. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(FD). Tech. Rep. CS-93-02, Brown University,
Providence, USA (January 1993), revised version in Journal of Logic Programming
37(1–3):293–316, 1998. Based on the unpublished manuscript Constraint Process-
ing in cc(FD), 1991.

17

https://doi.org/10.1016/0304-3975(94)90242-9
http://arxiv.org/abs/1501.04725

	Automatically Mining and Proving Generic Invariants on Integer Sequences

