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Over the past decades, a considerable body of work has shown
how to use supervised machine learning methods to build
regression models that can predict the running time of black-
box algorithms based on observed performance data. Such
empirical performance models (EPMs) are useful in many
practical contexts:

Algorithm selection. One widely adopted approach to the
classic problem of selecting the best from a given set of algo-
rithms on a per-instance basis [Ricel [1976] is to use EPMs to
predict the performance of all candidate algorithms and select
the one predicted to perform best [see, e.g., [Brewer} [1995;
Allen and Minton, 1996} [Lobjois and Lemaitre} |{1998;; |Fink,
1998:; |Howe et al.,2000; Nudelman et al., |2003; |Roberts and:
Howe, 2007} [ Xu et al., 2008}; Kotthoff et al.| 2012]

Parameter tuning and algorithm configuration. EPMs can
model the performance of a parameterized algorithm as a
function of its parameters; this is useful for sequential model-
based optimization, which alternates between learning an EPM
and using it to identify promising settings to evaluate next [see,
e.g.,Jones et al.l 1998} Bartz-Beielstein et al., 2005; |Hutten
et al., |2011; |Arbelaez et al.l |2012]]. EPMs can also model
algorithm performance as a function of both problem instance
features and algorithm parameter settings; such models can
then be used to select parameter settings with good predicted
performance on a per-instance basis [Hutter and Hamadi, [2005}
Hutter et al., 2006]].

Generating hard benchmarks. An EPM can be used to
identify parameter values for an instance generator that lead
to benchmark instances that are hard for one or more given
algorithms, and thus facilitate the improvement of algorithm
performance [Leyton-Brown et al., 2003} |2009].

Gaining insights into instance hardness and algorithm
performance. EPMs can be used to assess which instance
features and algorithm parameter values most impact empir-
ical performance. Some models support such assessments
directly [see, e.g.,[Ridge and Kudenkol [2007; Mersmann et al.,
2013} |Hutter et al.l 20144a]). For other models, generic feature
selection methods, such as forward selection, can be used to
identify a small number of key model inputs that explain algo-
rithm performance almost as well as the entire set [see, e.g.,
Leyton-Brown et al., [2009; |Hutter et al., [2013]).

The main contribution of our 2006 CP paper Performance
Prediction and Automated Tuning of Randomized and Para-
metric Algorithms was to extend EPMs to:

o Randomized Algorithms. We demonstrated that EPMs
can also make surprisingly accurate predictions of the run-
time distributions of incomplete and randomized search
methods, such as stochastic local search algorithms.

e Parametric Algorithms. We showed for the first time
how information about an algorithm’s parameter settings
can be incorporated into an EPM, and how EPMs can be
used to automatically adjust algorithm parameters on a
per-instance basis in order to optimize performance.

An empirical analysis for Novelty+ [Hoos| [2002] and
SAPS [Hutter et al., 2002] on structured and unstructured
SAT instances showed very good predictive performance, as
well as significant speedups of our automatically determined
parameter settings, when compared to the default and best
fixed distribution-specific parameter settings.

Following our 2006 paper, we worked on many of the afore-
mentioned applications of EPMs, especially algorithm selec-
tion (SATzilla [Xu et al.,[2008]) and algorithm configuration
(SMAC [Hutter et al.| 2011]]). We subsequently published a
comprehensive article in AlJ [Hutter et al., [2014b] that pre-
sented further methodological advancements on EPMs:

e More sophisticated modeling techniques. Random
forests turned out to work particularly well for predic-
tions based on a large number of instance features and
(both categorical and continuous) algorithm parameters.

e New instance features. We introduced a comprehensive
set of features for propositional satisfiability (SAT), the
travelling salesman problem (TSP) and mixed integer pro-
gramming (MIP) problems—in particular, novel probing
and timing features.

e Techniques from the statistical literature on survival
analysis. These offer better ways to handle data from
runs that were prematurely terminated (censored runs).

We look forward to more exciting work in the years to come
on building better EPMs and leveraging them in practice.
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