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This paper is a good example for how long some research ideas can simmer
before they are realized. The first time the idea to build a tool for tuning con-
straint solvers automatically was discussed was between Warwick Harvey and
Meinolf during CP 2003 in Kinsale (Ireland). Symmetry breaking was a hot
topic at the conference, but it, like many other techniques in CP, seemed to re-
quire careful solver calibration to work well. The general question arose to what
extent experimental results actually allowed us to compare different algorith-
mic approaches when performance depends so heavily on parameter settings. A
tool was needed to tune solvers automatically to level the playing field for all
competing approaches.

It took until 2007 until we revisited the idea. Meinolf and his graduate
student Yuri Malitsky followed up on an intriguing observation made by Egon
Balas [6], who found that randomly mixing heuristics in a greedy algorithm
for set covering frequently led to better results than sticking to the best pure
heuristic. This led to the following question:

Could one have the machine learn automatically which instance-specific
probabilities to use for a set of branching heuristics in a randomized

branch-and-bound tree search?

Extracting instance features, building a supervised training set, and then in-
ferring probabilities for each heuristic by multinomial logistic regression worked
better than using uniform randomization, but left lots of room for improve-
ment. The main problem with this straight forward ML approach consists in
the inherent chicken-and-egg problem when branching: On the one hand, how
we branch determines which sub-problems we will need to branch on going for-
ward. On the other hand, the distribution of sub-problems is needed to build
a representative training set for learning how to branch. Curiously, the effect
of branching on the subproblem distribution can lead to a virtual improvement
of search heuristics that learn absolutely nothing [8]. This obviously makes it
impossible to create a traditional ML training set effectively.

To deal with the chicken-and-egg problem, a holistic tuning approach is
needed that considers the entire search method. The alternative approach that
Yuri and Meinolf therefore invented was to run a continuous local search over
the continuous parameters of the search for clusters of instances, which worked
surprisingly well [9].

In the summer of 2008, Carlos visited Meinolf at Brown during his sabbatical.
They took a trip to Point Judith Beach in Rhode Island, together with Yuri
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and Meinolf’s other grad student Serdar Kadioglu. (On the way to the beach,
they were passed by the Brown CS Department Chair. Much to Meinolf’s
relief, the Chair did not recognize them as he zipped by on the highway.) At
the beach, we discussed what general search method might be best suited for
parameter tuning. A robust method was needed that could handle categorical,
ordinal, and continuous variables, an approach that works well without gradients
and for rugged objective landscapes, and that offered inherent capabilities for
parallelization. We wondered if it was possible to use genetic programming for
building a SAT solver by evolving the code through parameter configuration.
And so the idea to use an evolutionary algorithm for parameter tuning was
born.

Shortly afterwards, Kevin started as a Masters student at Brown and chose
the project of implementing a genetic algorithm for parameter tuning. His
experiments quickly showed that the general evolutionary approach failed to
work well when few objective evaluations were affordable. This analysis then
led to the gender separation of the approach we finally submitted to CP, thus
leading to the gender-based genetic algorithm (GGA) [2] that is still one of the
most effective approaches for parameter tuning to date, with recent extensions
allowing it to be distributed across a high-performance cluster and use a learned
model for creating new parameter settings [3].

Ten years after the original inception, one of the most exciting uses of GGA
is hyper-reactive search (HRS). In essence, the idea is to use runtime features of
a search algorithm (such as the number of steps since we last saw an improving
solution) to guide how the search continues. Here, GGA “learns” how the run-
time features should translate into stochastic search decisions to get the best
results. The approach was applied to Tabu Search [4] and Dialectic Search [7, 1]
for MaxSAT and won four categories at the 2016 MaxSAT Evaluation [5]. HRS
has revived the vision of a true meta-heuristic search approach that can self-
adapt and works without heavy manual tuning: The winning MaxSAT solver
took a mere two days to implement and literally knows nothing more about
MaxSAT than how to evaluate the objective. The strength of the approach re-
sults purely from allowing the machine to learn from experience how to conduct
a search more effectively.
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