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Abstract. This retrospective on our CP 2010 paper provides a narrative
of the research stream that contains it. It recounts how the research got
started, how the paper itself came about, and briefly what has happened
since.

1 Introduction

This is a retrospective on our paper “A systematic approach to MDD-based
constraint programming,” which appeared in the CP 2010 Proceedings [25].
The paper is intended to unify previous work on multivalued decision diagrams
(MDDs) as an approach to constraint programming (CP). We briefly recount
the story of how MDDs came to be applied to CP, how [25] pulled together some
of the ideas, and what has happened since.

First, a bit of background. MDDs are a straightforward generalization of
binary decision diagrams (BDDs), which were introduced by S. B. Akers in 1978
as a graphical representation of logic circuits [1]. BDDs and MDDs have since
become a widely used tool in circuit design, product configuration, and other
areas. Essential to this development was R. E. Bryant’s 1986 result that any
Boolean function has a unique minimal (“reduced”) BDD representation for a
given variable ordering [14].

By 2005, BDDs had seen a few applications to optimization and CP. They
had been used to help solve certain optimization problems [4, 18, 32], or to reduce
domains of set-valued variables in CP [24, 31]. Yet to our knowledge, no general
BDD-based solution method had been proposed for optimization or CP.

2 How It Started

The stream of research that led to [25] began when Henrik Reif Andersen
invited John Hooker to give a talk at the IT University of Copenhagen in 2005.
There, John met Henrik’s PhD student Tarik Hadžić. Henrik was using BDDs
for product configuration, but Tarik and John saw them as a promising data



structure for discrete optimization and CP. The following year, they wrote a
technical report [19] on postoptimality analysis with MDDs. The paper was never
submitted for publication, and the idea remained dormant for over a decade
(more on this later). At about the same time, however, John presented their
MDD-based method for 0–1 programming at a global optimization conference
[23], and they published similar ideas in the CPAIOR 2007 proceedings [20].

The basic attraction of MDDs for optimization and CP is a property they
share with multilayer neural networks and dynamic programming (DP). The
amount of information that can be stored in the diagram (or the DP state
transition graph) increases exponentially with the depth of the diagram, even if
the width is fixed. So-called deep learning in neural networks became possible
through an increase in the number of layers, allowing the network to represent
vastly more information. MDDs therefore offered the possibility of compactly
representing a complicated feasible set of a CP or optimization problem.

An added attraction of MDDs is that once the MDD is constructed, an opti-
mization problem with a separable objective function can be solved by finding a
shortest or longest path in the MDD. This is a simple and fast computation.
Furthermore, since a DP state transition graph can be viewed as an MDD
(although not a reduced one in general), MDD-based methods are well suited for
DP models. This could enable the solution of problems with recursive structure
that lack a practical constraint-based formulation.

Returning to our story, Tarik and John quickly discovered that despite the
representational power of MDDs, many combinatorial problems require an MDD
of exponential width. John had arranged for Tarik to enroll as a visiting PhD
student at Carnegie Mellon University, where they worked on the idea of using
fixed-width MDDs as a relaxation of the problem. The relaxed MDD could be
used in much the way as a linear programming relaxation in integer program-
ming, or it could serve as an enhanced constraint store in CP that could be more
effective than the traditional domain store.

During a brief return visit to Copenhagen, Tarik learned that Henrik and his
student Peter Tiedemann were working on similar ideas. The four investigators
combined forces to write a paper on relaxed MDDs as a constraint store, which
appeared in CP 2007 [2]. They constructed relaxed MDDs both by node splitting
(which refined the relaxation) and node merger (which reduced the size of the
relaxed MDD). They found that propagation through MDDs instead of the
domain store could drastically reduce the search tree and solution time for a
system of all-different constraints, which is the CP equivalent of the famous
graph coloring problem. This paper served as the basis for much subsequent
work in the area, beginning with an extension to equality constraints [22], an
application to configuration problems [21], and the paper discussed here [25].

3 Writing the Paper

In 2008, Samid (Sam) Hoda attended John’s PhD course at CMU on Integrated
Methods for Optimization, which turned into a book [27]. This was Sam’s first



real exposure to discrete modeling using CP, as most of his prior experience
had involved traditional optimization methods. He was extremely interested in
the possibilities that an MDD store provided as an alternative data structure to
encode relaxations. There were other unifying ideas introduced by John in that
course around relaxation, duality, consistency and modeling that influenced how
Sam viewed the role of MDDs in the broader context of solving CP and OR
problems.

Sam, John, and Willem-Jan van Hoeve initially started working together
on extending John and Tarik’s line of research to among and then hopefully
sequence constraints. A key idea in MDD-based CP is that the MDD passes
information from one constraint to the next; i.e., multiple constraints process the
same MDD, instead of each constraint processing its individual MDD. In trying
to develop an MDD propagator for among constraints, we looked at John and
Tarik’s existing propagators for inspiration and for what they had in common.
On the surface they seemed ad hoc and specialized for each constraint, similar
to what one finds in traditional propagation schemes for global constraints.

Branching is a key idea in solving both CPs and MIPs in practice. In CP,
if we view the traditional domain store as a relaxation, then branching tree
nodes can be identified with relaxations, and edges with imposing additional
local constraints. The same can be said for mixed integer programs with LP
relaxations at each node and (simple) linear inequalities on edges. Similarly,
MDD-based CP identifies MDDs with nodes and (simple) constraints with edges
of the branching tree. This is a “macro” branching view of MDDs that is natural
when viewing MDDs as relaxations.

However, there is another, more subtle level of branching that occurs when
working with MDDs. One characterization of MDDs is that they themselves are
branching trees in which isomorphic subtrees have been superimposed. Thus, it is
fairly natural to associate traversing an edge in an MDD with adding (conjoining)
a simple constraint. Yet what do we associate with nodes?

Sibling nodes in a branching tree can be viewed as disjuncts, and branching
can be viewed as “splitting” the parent into its children. Armed with this point
of view, we asked ourselves, what does it mean to merge nodes in an MDD? One
loose inspiration, at least for Sam, came from the lift-and-project procedure
in disjunctive programming. In disjunctive programming, each disjunct is a
polyhedron, and the result of the projection is again a polyhedron that faithfully
represents the union of the disjuncts. In MDDs, perhaps merging nodes would
be similar to projecting their “content” back into the same “space,” in which
case their merged/projected information should faithfully represent the union of
all the disjuncts. The fruitful idea in this (admittedly strained) analogy is that
the “content” might be a consistent representation of underlying information,
similar to the role of the LP relaxation in disjunctive programming.

By the time we had developed a propagator for among constraints, we real-
ized that the existing propagators were not as ad hoc as they first appeared. Each
propagator involved associating a data structure (information) with each node
of the MDD (similar to the role of a relaxation in the “macro” branching view).



Following an edge would be similar to adding a simple constraint. We introduced
the ⊗ notation for operations that process information when traversing an edge
to produce new information. When several edges entered a node, we introduced
the ⊕ notation for the operation that combines the information obtained by
traversing all the incoming edges. Processing information using ⊗, and combining
information using ⊕, result in information of the same form (i.e., captured in a
consistent data structure/representation) as that associated with the nodes from
which the information is derived.

MDD propagation works by deleting infeasible edges, an operation that gen-
eralizes conventional domain filtering. Our general scheme localized the decision
as to whether to delete an edge to the information stored at either end of the
edge. Furthermore, the local information could be assembled during a single
top-down pass and a single bottom-up pass through the MDD.

Soon afterwards, Willem had an inspired moment for the shaving argument
early in the paper. He showed that establishing MDD consistency only adds a
polynomial factor to the time and space complexity of determining feasibility of
a single variable assignment with respect to the MDD and a given constraint.
Another useful property of MDD propagation is that conventional domain prop-
agators can be applied to determine inconsistency of arcs in the MDD. Inter-
estingly, the resulting propagator may not establish MDD consistency, even if it
achieves domain consistency.

In the meantime, John had been working with Ionut, Aron and Tallys Yunes
on an integrated solver for optimization (SIMPL) that cleanly integrated CP and
mixed integer programming by taking the best of both worlds [3, 40]. Inspired by
this idea, Sam was excited to build an MDD-specific solver once it became clear
that all the existing propagators could be modeled using a generic framework.
Even though MDDs can grow exponentially large to represent a given constraint
perfectly, the basis of MDD-based constraint programming is to control the size
of a relaxed MDD by specifying a maximum width. When we started, we were
worried that we didn’t have a space-efficient way to propagate changes in the
MDD and decided to write the code in C++ using space-efficient arrays. As
we discovered later, some of these design decisions made it harder to extend
the code to deal with propagators that didn’t fit perfectly into the framework
described in the paper.

While building the solver we lacked a full appreciation for how powerful
restricted-width MDDs would be in practice. We quickly found out that we
didn’t need to propagate the constraints until a fixed point is reached (repeated
top-down and bottom-up passes), and we defaulted to using a single top-down
and bottom-pass for our experiments. We were also encouraged by the enormous
reduction in backtracks (several orders of magnitude) even when using relaxed
MDDs of very small width. But it wasn’t only the decrease in the number
of backtracks: because MDD propagation was so fast, we achieved orders-of-
magnitude reductions in computation time as well.

By the time we had completed the experiments we hadn’t managed to build
a custom propagator for the sequence constraint as we had set out to do. But



we were eager to share our results with the CPAIOR community and decided to
write the paper for CP 2010.

4 What Has Happened Since

Since 2010, research on MDD-based CP and optimization has moved in several
directions, and we describe only a few highlights here. Comprehensive coverage
of research through 2016 can be found in a book written by Willem, John, and
their former PhD students David Bergman and André Ciré [10]. More recent
results were presented at a Symposium on Decision Diagrams for Optimization
at CMU in October 2018 (DDOPT 2018, https://sites.google.com/view/ddopt-
2018). Still more research is reported on Willem’s website, Decision Diagrams for
Optimization [26]. David and André are coauthors of much of this research, and
both were honored to receive Doctoral Dissertation Awards from the Association
for Constraint Programming in recognition of their work on decision diagrams.

4.1 Toward a General-Purpose MDD-Based Solver

Experience with integer programming (IP) teaches that an effective solver re-
quires both relaxation bounds and primal heuristics. Relaxed MDDs provide
bounds, because the shortest path length in a relaxed MDD is a lower bound
on the optimal value of a problem. It was found in [8, 12] that MDDs provide
tighter bounds, in less time, for set covering and stable set problems than those
obtained by the full cutting plane resources of a state-of-the-art IP solver.

A primal heuristic is an algorithm that finds good feasible solutions. A
restricted MDD, the opposite of a relaxed MDD, provides a primal heuristic
because its shortest paths correspond to good feasible solutions. MDD-based
primal heuristics for set covering and set packing problems were found in [11] to
be superior to primal heuristics in a commercial IP solver, and again to require
less time.

The third ingredient in a general-purpose solver is branching. MDDs enable
a novel branching scheme, because rather than branch on variables, one can
branch on nodes in the last exact layer of a relaxed MDD. This allows the search
process to take advantage of the information encoded in the relaxed MDD. This
technique is combined in [9] with MDD-based relaxation and primal heuristics
to design a general-purpose solver for discrete optimization.

4.2 Constraint Reasoning with Decision Diagrams

As a direct application of the ideas discussed in the paper [25], observe that
MDDs can be incorporated in a general-purpose CP solver by viewing the
relaxed MDD as a global constraint. Propagation in the MDD is stronger than
traditional propagation on variable domains because a relaxed MDD transmits
more information from one constraint to another. For example, the paper [6]
studies MDD-based propagation for the Sequence constraint, and demonstrates



that relaxed MDDs of modest width can speed up the solving process several
orders of magnitude in some cases.

In [16], MDD-based constraint propagation was developed for general se-
quencing and routing problems, which may include time windows, setup times,
and precedence constraints. This paper also incorporates cost-based propagation
based on the objective value. The MDDs realized substantial solution accelera-
tion which resulted in closing several open instances from the sequential ordering
problem benchmark set on TSPlib. This work has inspired several other papers to
apply decision diagrams to scheduling and routing, including a solution method
to solve pickup-and-delivery problems for Grubhub in real time [35].

4.3 Recursive Modeling

MDD-based solvers naturally accept recursive models and therefore provide an
alternative method for solving deterministic DP problems. By relying on MDD-
based branch and bound rather than state space enumeration, they suggest a
new strategy for attacking the “curse of dimensionality” in DP.

The connection with DP is explored further in [28], which shows how one
can simplify a DP model by viewing the DP state transition graph as an MDD
and reducing it. Arc costs complicate the reduction process, but [28] generalizes
Bryant’s uniqueness result to MDDs with costs. Specifically, if the costs are
distributed in a “canonical” fashion on the arcs, there is a unique reduced MDD
representing a given optimization problem. This also allows one to solve problems
with nonseparable cost functions. The paper reduces the MDD for a classical
inventory management model to a width of one, making the problem trivial
to solve. It also shows how MDDs can be generalized to nonserial MDDs to
represent nonserial DP problems.

Part of the MDD modeling process is designing a scheme for merging or
splitting DP states so as to create a valid relaxed MDD. Our paper [25] does not
provide a practical way to identify valid node merger schemes, but [29] partially
meets this need. It states sufficient conditions on the merger operation that are
easily checked and can form the basis for solving deterministic DP models in
general.

4.4 Combination with Other Techniques

MDDs can be profitably combined with Lagrangean relaxation and Benders
decomposition. Lagrangean relaxation is combined with a relaxed MDD in [7] to
obtain tighter bounds within an existing CP solver than are available from the
solver alone. This resulted in substantial speedups in the solution of the TSP
problem with time windows. General sufficient conditions for when Lagrangian
relaxation can be implemented on an MDD are stated in [30]. The paper used a
stand-alone MDD (without a CP solver) to obtain very tight bounds for a well-
known set of job sequencing instances that had never been solved to optimality,
and closed some of the instances.



The master problem in Benders decomposition can take the form of an
MDD. Benders cuts can be added to the master problem by solving a separation
problem for the MDD that is analogous to the famous separation problem in IP
[15]. The Benders subproblem can also be formulated as an MDD, and Benders
cuts obtained by manipulating the arc costs in the MDD [34, 33].

Decision diagrams can also be integrated in modern integer programming
solvers, which rely on cut generation and tight bounds from linear programming
to reduce the branch-and-bound search process. In [39], decision diagrams are
used to generate cutting planes that separate a fractional solution from the
convex hull of integer solutions to an integer program. While the decision di-
agram can be compiled from any discrete sub-problem of the integer program,
the authors illustrate their method on independent set problems. This approach
was extended in [17] in which cutting planes are generated for general integer
nonlinear programming problems.

Relaxed decision diagrams can further be embedded inside the branch-and-
bound search for integer programming, to improve the bounds [37, 38]. In this
case, the decision diagrams are compiled generically, using the conflict graph
as primary structure. The conflict graph is a common component in modern
MIP solvers and represents the pairs of binary variables that cannot both take
a certain pair of values. To strengthen the bound, the authors apply constraint
propagation and Lagrangrean relaxation based on the constraints that are not
represented exactly in the decision diagram.

4.5 Nonlinear Problems

Decision diagrams have been applied to represent and solve nonlinear optimiza-
tion problems as well. The paper [5] considers integer programming problems
with a nonlinear objective function. They propose to represent the objective
function using decision diagrams which are encoded into binary form and added
to the integer program.

The paper [13] applies decision diagrams and Benders decomposition to solve
quadratically constrained integer programs.

4.6 Postoptimality Analysis

MDDs provide an ideal framework for postoptimality analysis in CP and discrete
optimization. They can compactly store a huge collection of optimal and near-
optimal solutions. They can then be rapidly queried to learn the structure of
these solutions. For example, one can ask which solutions within a given tolerance
of the optimal value satisfy stated properties, such as having certain variables
fixed to a desired value. Postoptimality analysis is vitally important in practice,
but it has been underutilized, perhaps because no satisfactory method has been
available.

A recent paper [36] builds on ideas in the early technical report cited above
[19] to conduct MDD-based postoptimality analysis for IP. It shows that a
reduced MDD containing near-optimal solutions can be further reduced to a



“sound” MDD, a concept introduced in [19], that is equally useful for postop-
timality analysis. It proves that a certain node merger operation, applied re-
peatedly, yields a smallest possible sound MDD for a given problem. It remains
a research challenge to adapt MDD-based postoptimality analysis to problems
with continuous as well as discrete variables.
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