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Our paper on ”Algorithm Selection and Scheduling” [10] was published at
CP 2011, but the origins of this work go back to 2008 when Meinolf and Yuri
began working on instance-specific algorithm configuration [5]. Our research
showed quickly that employing solver parameterizations at runtime which had
never been tested during training was a brittle approach that exhibited too much
variance to be applicable in practice. We therefore resorted to an approach that
generated a small set of parameterizations during training and then selected one
of them at runtime. The ultimate result of the work leading to the domination
of the SAT competitions for three years using only outdated solvers which by
themselves had never even placed. What the research demonstrated, is the
folly of creating jack-of-all trades methodologies. Instead, one needs to create
parameterized methodologies and let algorithms tune them and decide when
best to use them.

In [5], the research began by clustering training instances, and generating one
parameterization for each cluster that worked well for the respective instances.
At runtime, we then computed the distances to the cluster centers to determine
the nearest cluster - and which corresponding parameterization to run. In other
words, we built a small portfolio of algorithms during training, and used a
simple Voronoi diagram to map instance features to algorithms to select the
parameterization at runtime.

While this approach worked well for us, we were not using a state-of-the-
art algorithm selection algorithm. These were based on empirical hardness
models [16] at the time. That is, to select the right solver for an instance, the
best approach was to forecast each solver’s runtime based on instance features,
and then select the solver with the lowest expected runtime. The performance
forecast was typically based on a parametric model.

We wanted to improve our instance-specific algorithm configurator by aug-
menting it with a performance-model based algorithm selector. To our surprise,
this worsened performance. We needed to check if this was due to the fact that
we had specifically generated parameterizations for the clusters, or whether
clustering-based algorithm selection was also a valid approach for building algo-
rithm portfolios in general (i.e. for portfolios of algorithms we are given, rather
than parameterizations specifically generated).

Running experiments on SAT, where the approach from [16] had excelled
before, showed clearly that cluster-based algorithm selection worked better than
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empirical hardness models! We therefore widened our target: We no longer just
wanted a better instance-specific algorithm configurator, we now also wanted a
better algorithm portfolio generator.

The first modification we made to the clustering approach for algorithm
selection was to center the clusters around test instances. That is, instead of
creating fixed clusters upfront, we would create a cluster at runtime, when we
knew the features of the test instance. That approach is of course better known
as k-nearest neighbors. However, we modified the standard k-NN approach a
bit: We would not pick the solver that was the best solver on most instances
in the neighborhood. Instead, we chose the solver that would need the shortest
amount of time to solve all instances in the cluster. To our knowledge, this
created the first cost-based classification algorithm for algorithm selection.

The next step towards a superior portfolio builder was to not just pick one
solver, but to generate a schedule of solvers. An offline schedule had previously
been proposed in [13]. Our idea was to generate a schedule of solvers at runtime,
one that would work best for the k nearest instances in the training set. Since
the time needed to build this schedule was directly reducing the time to solve the
actual problem instance, we needed a very fast scheduler. Rather than solving
the resulting NP-hard set-covering problem with an extremely large number
of sets perfectly, we resorted to a column-generation approach at the root to
greatly reduce the number of sets. This method worked in seconds and returned
efficient solver schedules.

The fast scheduling approach allowed us to generate schedules at runtime,
specifically geared towards the instance at hand. However, in preparation for
the SAT Competition 2011 [2], we found that fully dynamic schedules tended to
over-optimize the schedules towards the nearest neighbor clusters. Therefore,
in the entry that won two gold, two silver, and three bronze medals at the
competition, we used a static schedule for the first 10% of the available time to
catch instances that were easy for at least one high-performing solver. After the
schedule was run, we would then select one long-running solver for the remaining
90% of the available time.

Due to the competition rules, the SAT solvers we used in the 2011 compe-
tition were all from 2009 or earlier. Note what this means: Just by carefully
selecting the best solver for a given instance, while hedging the odds a bit by em-
ploying a quick schedule upfront, we could make up for two years of development
time in what was probably the fastest developing community on combinatorial
search algorithms at the time. This is a remarkable testament to the power of
algorithm portfolios.

Our paper also had a profound impact on Serdar’s professional career and
has shaped the research directions he pushed at Oracle. As a member of the
Advanced Constraint Technology team, Serdar helped other Oracle products to
solve their large-scale combinatorial optimization problems. When faced with
complex business requirements under severe runtime constraints, Hybrid Opti-
mization and Decomposition methods such as column generation and logic-based
benders’ decomposition [3] allow us to combine the complementary strengths of
different paradigms. Thanks to the work on this paper, Serdar was able to lead
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this line of research at Oracle with confidence. In particular, he addressed sev-
eral business-critical problems with immediate practical impact in Supply-Chain
Management [8], Planning & Scheduling [14, 9], Product Configuration [15], and
Resource Allocation [7, 6]. These contributions were highlighted by Business In-
sider [4].

Later, we extended our method for parallel algorithm portfolios which in-
cluded parallel SAT solvers and won two gold medals at the 2013 SAT Com-
petition as well [11]. At this point, the SAT Competition organizers became
hostile enough towards portfolios that the technology was banned altogether.
The official reason: To ensure that only a ”pure” SAT solvers should be able to
claim being best performing SAT Solver (even when this was factually not so).
Using instance-specific algorithm tuning, and a new portfolio builder called cost-
sensitive hierarchical clustering [12], we nevertheless continued to win seventeen
first places at the MaxSAT Evaluations between 2013 and 2016.

Finally, in 2018 we applied automatic algorithm configuration to portfolio
building itself [1]. This showed that different sets of solvers and instances fa-
vored different portfolio strategies. For some, it was better to have long static
schedules, for others it was better to choose only one long running solver, and
again for others a dynamic schedule at runtime was best. Thankfully, users do
not need to figure this out for themselves, they can simply let the automatic
portfolio configurator do its work and receive a portfolio of solvers that is likely
years ahead of the performance that any ”pure” solver will achieve.

References
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