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Abstract. To celebrate the first 25 years of the International Confer-
ence on Principles and Practice of Constraint Programming (CP) the
editors invited the authors of the most cited paper of each year to write
a commentary on their paper. This report describes our reflections on
the CP 2014 paper “Incremental Cardinality Constraints for MaxSAT”
and its impact on the Maximum Satisfiability community and beyond.

1 Introduction

During the first decade of the century, advances in Propositional Satisfiability
(SAT) algorithms resulted in the proposal of solving Maximum Satisfiability
(MaxSAT) using iterative calls to a SAT solver. Previously, most MaxSAT solvers
used a branch and bound approach enhanced with lower bounding procedures
and MaxSAT inference rules |16].

However, the ability of SAT solvers to provide an unsatisfiable subformula
whenever an unsatisfiable call is made enabled the proposal of new algorithms
for MaxSAT [8,/10}(18}/23]. These new algorithms were orders of magnitude faster
when solving several sets of real-world problem instances.

Meanwhile, the incremental usage of SAT solvers [4}7,[26,132] had provided
significant gains in some domains where SAT algorithms were iteratively be-
ing used. However, incrementality had not yet been fully exploited in MaxSAT
solving, except for algorithms using a Sat-Unsat approach.

In Unsat-Sat algorithms for MaxSAT, at each iteration, a new instance of the
SAT solver was created and the formula was rebuilt from scratch. As a result,
almost all the knowledge from the previous iteration was lost. The main reason
for rebuilding the SAT solver is that some constraints from previous iterations
are no longer valid. Moreover, removing these constraints would not be enough,
as learned constraints would also have to be removed. This cleaning process is
not easy to perform efficiently.

Algorithm [I] presents the MSU3 algorithm for partial MaxSAT. Observe that,
at each iteration, the cardinality constraint in line [3| from one iteration is not
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Algorithm 1: MSU3 Algorithm for partial MaxSAT
Input: ¢ = pn U ps
Output: satisfying assignment to ¢
(‘PW’ VR, )‘) « (907 0’ 0)
while true do
(st, v, c) < SAT(pw U {CNF (3, cy 7 < A)})
if st = SAT then
L return v // satisfying assignment to ¢
foreach c € (pc N ¢s) do
Ve + VrU{r} // r is a new variable
CR<cVr // clause c was not previously relaxed
ew <+ (ew \{c}) U{cr}
A= A+1
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valid to the next iteration. The set of literals might have changed and the lower
bound A is incremented.

In our paper [21], we proposed three techniques that allow Unsat-Sat MaxSAT
algorithms (such as Algorithm [1]) to use the same SAT solver between iterations.
In particular, we propose the usage of (i) incremental blocking, (ii) incremen-
tal weakening, and (iii) iterative encoding of cardinality constraints. Note that
rebuilding the SAT solver, includes having to rebuild the CNF encoding of car-
dinality constraints. However, the iterative encoding of cardinality constraints
allows to gradually encode the cardinality constraint into CNF, maintaining the
auxiliary variables already used in the previous iteration. Moreover, as a re-
sult of using incrementality, the internal state of the SAT solver is maintained,
as well as learned clauses discovered in the previous iterations. Experimental
results from our paper and subsequent MaxSAT evaluations clearly show the ef-
fectiveness of the proposed techniques. We also note that current state of the art
MaxSAT solvers extensively use the incremental techniques originally proposed
in the paper.

The remainder of the paper is organized as follows. Section [2| describes the
problem that motivated this approach and its application to MaxSAT. Next, we
study and discuss the effectiveness of these incremental techniques. Finally, in
section 4] the impact of the proposed ideas on subsequent MaxSAT technology
is revised.

2 Origin

The motivation for incremental cardinality constraints [21] comes from a problem
of a completely different domain of automated program repair for weak memory
models.

Modern multicore CPUs implement optimizations such as store buffers and
inwvalidate queues. These features result in weaker memory consistency guaran-
tees than sequential consistency (SC) [14]. Though such hardware optimizations
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Fig. 1: (EI) Reordering in TSO. (]EI) A program with innocent and culprit reorder-
ings

offer better performance, the weaker consistency has the drawback of intricate
and subtle semantics, thus making it harder for programmers to anticipate how
their program might behave when running on such architectures. For example, a
pair of statements can appear to have been executed out of the program order.

Consider the program given in Fig. Here, x and y are shared variables
whereas r1 and r2 are thread-local variables or registers. Statements s; and s3
perform write operations. Because of store buffering, these write operations may
not be reflected immediately in the memory. Next, both threads may proceed
to perform the read operations se and s4. Since the write operations might still
not have hit the memory, stale values for x and y may be read in r2 and ri,
respectively. This will cause the assertion to fail. Such behavior is possible with
architectures that implement Total Store Order (TSO), which allows write-read
reordering. Note that on an hypothetical architecture that guarantees sequen-
tial consistency, this would never happen. However, due to store buffering, a
global observer might witness that the statements are executed in the order
(82, 84,51, 83), which results in the assertion failure. We say that (s1,s2) and
(s3,54) have been reordered.

Since these reorderings are non-deterministic, architectures usually provide
fence (or memory barrier) instructions to allow a programmer to restrict such
reorderings. In this case, a fence between (s1, s2) and (s3, 84) is needed to ensure
that the assertion does not fail.

We distinguish approaches that aim to restore sequential consistency (SC)
and approaches that aim to ensure that a user-provided assertion holds. Since
every fence incurs in a performance penalty, it is desirable to keep the number
of fences to a minimum.

Consider the example given in Fig. Here, x,y,z,w are shared variables
initialized to 0. All other variables are thread-local. A processor that implements
total store ordering (TSO) permits a read of a global variable to precede a write
operation to a different global variable when there are no dependencies between
the two statements. Note that if (s3, s4) or (s7, sg) is reordered, the assertion will
be violated. We shall call such pairs of statements culprit pairs. By contrast, the
pairs (s1, s2) and (s5, s¢) do not lead to an assertion violation irrespective of the
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order in which their statements execute. We shall call such pairs of statements
innocent pairs. A tool that restores SC would insert four fences, one for each
pair mentioned earlier. However, only two fences (between ss3, s4 and s7, sg) are
necessary to avoid the assertion violation.

There are approaches which look at a counterexample provided by a model
checker for such programs and tries to avoid some minimal set of reorderings in
order to avoid assertion violations. For most of these approaches, a large num-
ber of innocent pairs is a bane and would result in a lot of expensive queries to
the underlying model checker. Reorder Bounded Model Checking (ROBMC) [12]
addresses this issue by exploring only those behaviors where the number of be-
haviors is bounded by some parameter k. For every pair of statements s;,s;
which can potentially get reordered, a new variable a;; is introduced such that
a reordering is allowed only if a;; is true. Then, a cardinality constraint a;; < k
enforces the bound on reordering. In |12], it is shown that ROBMC results in
much lesser number of queries to the model checker, thus making it much more
efficient. Initially, & = 1 so that all the counterexamples with only one culprit
pair can be eliminated.

In general, there could be assertion violations, which will be triggered only if
more than 1 culprit pairs are reordered. Therefore, for soundness, after making
the program safe for £ = 1, the bound k must be increased to a higher value to
check if there are counter examples for this higher bound. Note that to check for
assertion violation at a higher bound k', only constraint that is required to change
is from (3~ a;; < k) to (3 a;; <K'). The rest of the formula which encodes all
possible program behaviors remains the same. We move to a higher bound %’
only when at a lower bound k the program is declared safe, which is usually
indicated by the corresponding formula representing program behaviors being
unsatisfiable. This is where, incremental cardinality constraints play a crucial
role by allowing us to increase the upper bound of the cardinality constraints
when approaching from an unsatisfiable region.

3 Looking Back

The experimental evaluation conducted in the CP’14 paper [21] showed a clear
improvement when using incremental cardinality encodings. Not only the num-
ber of solved instances increased but, on average, the incremental version was
3.6x faster than the corresponding non-incremental version. However, Ansotegui
et al. [2] stated that the improvement may not be due to incrementality but
rather to the way the cardinality encoding is built. Note that, in the incremental
approach, the cardinality encoding is built taking into consideration the struc-
ture of the unsatisfiable subformulas (cores) found by the algorithm.

Looking back to our original experiments, we did not fully explore the reason
behind the improvements. In this section, we perform additional experiments
that show that our original insights were correct and that the primary reason for
the performance gain is incrementality and not the way the cardinality encoding
is built. However, the way the cardinality encoding is built may also have a small
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Version|Incremental Encoding Structure Reuse Cores
ni No Complete Rebuild No
ni-c No Complete Rebuild|From incremental version
ni-s No|Structure of the Unsat cores No
ni-s-c No|Structure of the Unsat cores|From incremental version
i Yes|Structure of the Unsat cores No

Table 1: Different versions of MSU3

benefit for the performance of the solver and should be the target of further
study.

We restrict ourselves to the non-incremental and incremental versions of the
MSU3 algorithm since this was the most efficient algorithm presented in our
CP’14 paper [21]. To clarify the nature of the improvement, we ran five variants
described in Tab. [If and implemented on top of the open-wbo framework [22].
Column “Incremental” indicates if the SAT solver is reused between iterations,
column “Encoding Structure” indicates if the cardinality constraint is rebuilt
from scratch in each iteration and column “Reuse Cores” indicates if the cardi-
nality constraint is built using the Unsat cores found in the incremental version.

More specifically: Version (ni) corresponds to the classic implementation of
the MSU3 algorithm with no incrementality where the SAT solver is not reused
and the cardinality constraint is rebuilt in each iteration; Version (i) corresponds
to the fully incremental version proposed in the paper; Version (ni-c) does not
reuses the SAT solver between iterations, but the cardinality constraint is non-
incrementally rebuilt using the unsatisfiable cores from the incremental version
(i); Version (ni-s) also does not reuses the SAT solver, but the cardinality con-
straint is built according to the structure of the unsatisfiable cores found by the
algorithm (i.e. the structure of the cardinality encoding follows the structure
of the cores found); Version (ni-s-c) also does not reuses the SAT solver, but
the cardinality constraint is built according to the structure of the unsatisfiable
cores found by algorithm (i). The goal of testing all these variants is to clarify
if the improvement is coming due to the way the encoding is built or due to
the incrementality of the approach. All experiments were run on StarExec [33]
using Intel Xeon E5-2609 processors (2.40GHz) with a memory limit of 32GB
and time limit of 1,800 seconds. We used the same benchmarks as in our CP’14
paper, which corresponds to the 627 partial industrial MaxSAT instances from
the MaxSAT Evaluation 2013.

Fig. 2] shows a cactus plot with the running times of the different non-
incremental and incremental versions. We can see that the incremental version
clearly outperforms the non-incremental versions and it is the main reason for
the performance of the incremental MSU3 algorithm. On the other hand, all
non-incremental versions solve a similar number of instances.

Fig. [3| shows scatter plots that compare the non-incremental versions with
and without using the structure of the cores when building the cardinality encod-
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Fig.2: Running times of the different non-incremental and incremental versions
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Fig. 3: Impact of the structure of the encoding on the performance of the solver

ing. Each point in the plot corresponds to a problem instance, where the x-axis
corresponds to the run time required by the non-incremental versions that do
not use the structure and the y-axis corresponds to the run time required by the
non-incremental versions that use core structure when building the cardinality
encoding. The (ni) and (ni-s) versions solve 527 and 524 instances, respectively.
However, when looking at the performance of the algorithm, we can see that
the majority of the instances are solved faster when using the structure of the
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cores to build the encoding. Nevertheless, there are several outliers where this
behavior is not observed. The (ni-c) and (ni-s-c) versions solve 521 and 522 in-
stances, respectively. These versions were run on the 555 instances solved by the
incremental version and reuse the same cores found by the incremental version.
Therefore, the only difference between (ni-c) and (ni-s-c) is on how the encoding
is built. In this case, we can also observe a similar scenario as before where (ni-
s-c) is faster on the majority of the instances. Even though the structure of the
cores when building the cardinality encoding has a minor effect on the number
of solved instances, it does seem to improve the running time of the solver.

Threats to validity. Even though our results support our original insights that
incrementality is the main reason for the observed improvement, some factors
may have led us to wrong conclusions. In particular, maybe if we used a differ-
ent set of benchmarks, then the results would be different. However, we did a
preliminary study with different benchmarks and obtained similar results.
Another threat to our conclusions is the fact that we only tested our approach us-
ing the MSU3 algorithm. It may be that the structure of the cores when building
the cardinality encoding is more important for other MaxSAT algorithms (e.g.,
WPM3 , RC2 ) than for MSU3. As future work, we plan to investigate
this impact on different algorithms and see if our conclusions still hold.

4 Impact on MaxSAT and beyond
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Fig. [ shows a cactus plot with the evolution of MaxSAT solvers for partial
MaxSAT since 2009 until 2019. We selected the non-portfolio solvers with most
instances solved in the MaxSAT Evaluation of each year. All solvers were run
on StarExec with a time limit of 1,800 seconds and a memory limit of 32GB
on the 627 partial industrial benchmarks from MaxSAT Evaluation 2013. The
solvers in Fig. [4] are: PM2 [1] (2009), QMaxSAT [13]28] (2010-2013), Open-
WBO [21,127] (2014, 2017), WPM3 [2] (2015-16), and RC2 [11] (2018-19). We
can see a significant improvement of MaxSAT solvers in the last decade.

The techniques proposed in the CP’14 paper were implemented on top of
the open-wbo framework [22] and won the partial industrial MaxSAT Evalua-
tion 2014 category. This framework is open-source where any minisat-like SAT
solver can be pluged-in. Since the proposed techniques became available in an
open-source solver, it became easier to be adopted by the research community.
As a result, other state of the art MaxSAT solvers have also adopted many of the
techniques, in particular the iterative encoding of cardinality constraints [24,25].
In 2015, it was shown that the iterative encoding could also be used for encoding
pseudo-Boolean constraints into SAT [20]. Nowadays, top performing Unsat-Sat
MaxSAT algorithms use at least one of the three techniques proposed in the
paper either for cardinality of for pseudo-Boolean constraints [3,(11},27]. More-
over, a new generation of incomplete solvers for MaxSAT also take advantage of
algorithms using these techniques [6}9}15].

The success of solving MaxSAT using incremental encodings of constraints
has provided a boost in performance when solving problem instances in sev-
eral domains, such as program repair [12], model-based diagnosis [17,[19] or
timetabling [5]. Moreover, these ideas have also provided inspiration for similar
incremental approaches in solving other problems such as Markov logic net-
works [31] or software analysis [30].

Acknowledgement. We would like to thank Naveen Pai for a preliminary study
on the impact of cores when building incremental cardinality constraints for
Independent Studies in Computer Science at Carnegie Mellon University [29].
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