
Comments on “Structure-driven Multiple
Constraint Acquisition”

Dimosthenis C. Tsouros1, Kostas Stergiou1, Christian Bessiere2

1 Dept. of Informatics & Telecommunications Engineering,
University of Western Macedonia, Kozani, Greece

dtsouros@uowm.gr, kstergiou@uowm.gr
2 CNRS, University of Montpellier, France

bessiere@lirmm.fr

Abstract. In the paper “Structure-driven Multiple Constraint Acqui-
sition”, presented at CP-2019, we detected two important drawbacks
of multiple constraint acquisition, and proposed two techniques (inte-
grated into a new algorithm) to overcome them. Specifically, we pro-
posed a constraint acquisition algorithm that exploits the structure of
the learned constraint network to focus the interactive learning process
on more promising points of the problem, while it avoids searching ex-
haustively to learn all the constraints from the generated example, taking
a more simple approach. In this paper we recall some details about the
development of the new algorithm.

1 Background on Constraint Acquisition

The basic assumption in CP is that the user models the problem and a solver is
then used to solve it. However, modeling is considered as a major bottleneck in
the wider use of constraint technology [1–3], as it requires considerable expertise
in CP. To overcome this obstacle, several techniques have been proposed [4–9].
State-of-the-art interactive constraint acquisition systems such as QuAcq [10]
and MultiAcq [11] can assist non-expert users in the modelling task. The main
idea is that a series of examples/queries is posted to the user, and the model of
the target constraint problem is acquired (i.e. learned) based on the answers of
the user. In more detail, the system tries to identify if a constraint belongs to the
target network by generating a variable assignment that violates it. Then, this
assignment is posted to the user asking whether the assignment is a solution to
the problem or not, and based on the answer of the user, the constraint can either
be added to the learned network or removed from the candidate constraints.

QuAcq learns one constraint from each generated query, while MultiAcq
learns all the constraints that can possibly be learned. However, MultiAcq needs
a linear number of queries to find the scope of each constraint, while QuAcq has
a logarithmic complexity in terms of the number of queries.

Despite the progress being made in constraint acquisition, there are still im-
portant challenges to be faced regarding the applicability of the existing meth-
ods and their computational cost. MQuAcq [12] is an algorithm for active con-
straint acquisition that has been shown to outperform previous algorithms such



as QuAcq and MultiAcq. It combines the strengths of QuAcq and MultiAcq
and outperforms both of them, as it requires a logarithmic number of queries
to locate the scope of each violated constraint, and discovers all the violated
constraints from a negative example. This is done via a recursive process, by
removing one variable from the scope of each constraint learned, until it finds a
query that does not violate any constraint already found.

In our CP-2019 paper “Structure-driven Multiple Constraint Acquisition”
we displayed two important drawbacks of MQuAcq [13]. First, for each negative
example, the number of recursive calls to the main procedure of MQuAcq can
be non-linear, making it impractical in terms of cpu time for large problems.
Second, MQuAcq, as well as QuAcq and MultiAcq, does not take into account the
structure of the learned problem. In the next section we recall how we discovered
these flaws of MQuAcq and developed the new algorithm.

2 Developing “Structure-driven Multiple Constraint
Acquisition”

Although it is not always easy to pinpoint when and how the ideas forming the
basis of a paper came about, we can safely say that our paper was developed as
the result of the combination of three factors:

1. A natural evolution of the work on MQuAcq presented at CP-2018.
2. Interaction with fellow researchers during CP-2018.
3. Questions arising through unexpected experimental results.

Regarding the first of the above, exploiting the structure of the problem that
is being acquired to better focus the generated queries seemed like a natural step
to take while trying to improve the performance of MQuAcq. So this was a goal
that was set after our work on MQuAcq was completed.

Regarding the second factor, after the presentation of our paper on MQuAcq
at CP-2018 by Dimosthenis Tsouros, among the questions posted to him, one
fellow researcher inquired about the possibility of exploiting structure during
the acquisition process, while another asked whether the time complexity of
MQuAcq had been specified. The first question helped to confirm our intuition
about the importance of problem structure, which was the basis of one of the
two main contributions of our CP-2019 paper. The second question was discussed
between us after CP-2018 but was rather cast aside to focus on other things as
it did not seem very important to us at that time.

However, the importance of MQuAcq’s (then unknown) time complexity
emerged as a serious issue some months later when, out of scientific curios-
ity, we decided to test the existing constraint acquisition algorithms on larger
problems than the ones considered in the literature. Unexpectedly to us, exper-
imental results on large problems (like 16×16 Sudoku) showed that MQuAcq,
which was considerably faster than its predecessor QuAcq on smaller problems,
was now quite slower. This forced us to revisit the question about MQuAcq’s



complexity. We found that the number of iterations performed by the algorithm’s
main procedure to find all the violated constraints from a negative example was
non-linear in the worst case, and this seriously affects its run time as the size of
the problems grows.

Based on these, we developed MQuAcq-2, an algorithm that instead of finding
all the violated constraints from each negative example, it tries to focus on the
most promising parts derived from the structure of the learned network. To
avoid the non-linear time-complexity of MQuAcq, we used a “lazy” approach
by removing the entire scope of each learned constraint from the next query, so
that all the learned constraints from a single example are non-overlapping. To
be more precise, the main contributions of MQuAcq-2 are the following:

– It exploits the structure of the learned network to focus on selected violated
constraints. Specifically, we presented an instantiation of the general method
where the structure searched for is that of a quasi-clique, as cliques and quasi-
cliques are common in CSPs, but the algorithm could also exploit other types
of structure.

– In case no more constraints can be learned by exploiting the structure of
the learned network, it tries to find some non-overlapping constraints of the
target network. Hence, it can learn some of the violating constraints but not
necessarily all of them. This allows us to alleviate the high run time that
MQuAcq incurs when searching for all the violated constraints from each
negative example.

The combination of these two contributions resulted in an algorithm that
outperforms MQuAcq (as well as QuAcq and MultiAcq) in terms of both time
and number of queries, especially on larger problems, and even in the absence
of structure.

3 Conclusions

The ideas and motivation behind “Structure-driven Multiple Constraint Acqui-
sition” came about not only through a will to improve our existing algorithm,
but also through interaction with other researchers at CP, and through unex-
pected experimental results. This demonstrates the ever lasting usefulness of
conference presentations and interaction with our peers, and the importance of
curiosity-driven experimentation.

References

1. Freuder, E.C.: Modeling: the final frontier. In: The First International Conference
on The Practical Application of Constraint Technologies and Logic Programming
(PACLP), London. (1999) 15–21

2. Freuder, E.C., O’Sullivan, B.: Grand challenges for constraint programming. Con-
straints 19(2) (2014) 150–162



3. Freuder, E.C.: Progress towards the holy grail. Constraints 23(2) (2018) 158–171
4. Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based match-

maker agents. In: International Conference on Principles and Practice of Constraint
Programming, Springer (1998) 192–204

5. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: International Con-
ference on Principles and Practice of Constraint Programming, Springer (2004)
123–137

6. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A sat-based version space
algorithm for acquiring constraint satisfaction problems. In: European Conference
on Machine Learning, Springer (2005) 23–34

7. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In:
22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI).
Volume 1., IEEE (2010) 45–52

8. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models
from positive examples. In: International Conference on Principles and Practice of
Constraint Programming, Springer (2012) 141–157

9. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Arti-
ficial Intelligence 244 (2017) 315–342

10. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.G., Walsh, T., et al.: Constraint acquisition via partial queries. In:
International Joint Conference on Artificial Intelligence (IJCAI). Volume 13. (2013)
475–481

11. Arcangioli, R., Bessiere, C., Lazaar, N.: Multiple constraint aquisition. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). (2016) 698–704

12. Tsouros, D.C., Stergiou, K., Sarigiannidis, P.G.: Efficient methods for constraint
acquisition. In: 24th International Conference on Principles and Practice of Con-
straint Programming. (2018)

13. Tsouros, D.C., Stergiou, K., Bessiere, C.: Structure-driven multiple constraint
acquisition. In: 25th International Conference on Principles and Practice of Con-
straint Programming. (2019)


