Abstract Model Generation in Interactive Consultant

Pierre Carbonnelle!, Gerda Janssens?, and Marc Denecker?

! Katholiek Universiteit Leuven
pierre.carbonnelle@kuleuven.be
2 Katholiek Universiteit Leuven
gerda. janssens@kuleuven.be
3 Katholiek Universiteit Leuven
marc.denecker@kuleuven.be

Abstract

In a joint man-machine cognitive system, the human and the machine play specific roles:
to make a decision, the human collects relevant information about his environment and
goals, and translates them into a language understandable by the machine; the machine
makes a recommendation; finally, the human evaluates the recommendation and applies it
to the environment as appropriate.

We propose an interactive consultant to whom the user describes his knowledge about
the problem in a very expressive language: first order logic with arithmetic. The formulas
he enters define the set of constraints to be satisfied. The interactive consultant then
proposes concrete solutions that satisfy the formulas, possibly using additional background
knowledge, and explains how it derived them. These solutions include the recommendation
of the interactive consultant, for evaluation by the human.

Support for this evaluation of recommendation is often overlooked, and yet it is critical
for the acceptance of the machine by the human. Evaluating samples of concrete solutions
is not an efficient way to build trust in the interactive consultant. So, we explain how to
generalize these concrete solutions into abstract models that the user can review in order
to assess the correctness of the interactive consultant.

We report on our progress in its implementation.

1 Introduction

As computer systems become more and more intelligent, their interactions with humans become
richer. “Augmented Intelligence” describes systems where human and machine work together
and learn how to solve a problem by taking advantage of their respective strengths. When this
happens, human and machine form a “joint cognitive system”[10].

In a joint man-machine cognitive system, the human and the machine play specific roles:
the human collects relevant information about his environment and goals, and translates them
into a language understandable by the machine; the machine then makes a recommendation;
finally, the human evaluates the recommendation. If the recommendation is appropriate, he
applies it to the environment; otherwise, the human changes his translation or the machine
with the hope of getting a better recommendation, or loses faith in the machine.

We propose a machine to whom the user describes his knowledge about the problem in a
very expressive language: first order logic with arithmetic[7], as taught to many students in
secondary schools. We call it an interactive consultant.

Indeed, we humans have the peculiar ability to recognize the similarity between different
situations: within a particular class of situations, we characterize each situation by a set of
characteristics; we describe each specific situation in that class by assigning different values
to these characteristics, by observation or by imagination; we can also represent decisions by
assigning values to some other characteristics; finally, using some rules or laws combining these

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

characteristics, we make the judgment that a particular decision is possible, acceptable or
desirable in a given situation.

This set of characteristics and their domain is the vocabulary with which we propose to
construct mathematical formulas that embody the laws that must be respected when assigning
values to describe a possible (or acceptable, or desirable) decision in a situation. We propose
to feed these vocabulary and laws to our interactive consultant, so that he can help us reason
with them rigorously, and reach correct decisions in particular situations.

With such a consultant, for example, an engineer may collect the rules describing a configu-
ration problem, and translate them to formulas in first order logic and arithmetic; the machine
then proposes concrete solutions that the engineer evaluates. If the solution is inappropriate,
he may revise his description of the problem until an acceptable configuration is found.

This feedback loop is essential to the learning process, and is critical for the acceptance
of the machine by the human. Unfortunately, the evaluation of solutions by humans is often
overlooked when designing machines, and is thus time-consuming. With a traditional design,
it’s only after repeated use or extensive testing that the user gains confidence in the machine.

To speed up the evaluation process, we propose to generalize these concrete solutions into
abstract models that can be easily assessed. Instead of evaluating one solution at a time, the
human evaluates families of solutions presented in an easy-to-read tabular form similar to the
Decision Modeling Notation[2].

The contributions of this paper are: 1) a description of the capabilities of an interactive
consultant; 2) a definition of abstract models and methods to compute them.

This paper is organized as follows: 1) we first present the capabilities of an interactive
consultant; 2) we recall the main concepts in first order logic with background theories; 3) we
introduce the abstract models and explain how to compute them; 4) we finally describe our
implementation and illustrate the benefits of abstract models.

2 Interactive consultant

An interactive consultant is a computerized machine that helps a user come to a decision. It
is general purpose, and can be reconfigured to obtain recommendations in engineering (e.g.,
configuration management), legal reasoning (e.g., tax adviser) or economics (e.g., investment
decision).

An interactive consultant has two modes of operation. The first mode is used to enter
general knowledge over a class of problems, while the second mode is used to enter knowledge
specific to a problem at hand and to obtain recommendations. The knowledge base created in
the first mode often contains intensional knowledge that can be re-used from one problem to
the next.

In the first mode, the user uses an editor to 1) declare the vocabulary for the class of
problems, i.e., the set of symbols (aka, ”characteristics”) and their domain, and 2) to enter
his knowledge about this class of problems, in the form of formulas in first order logic with
arithmetic. The formulas are the set of constraints to be satisfied by finding appropriate values
for the symbols they contain, within the boundary of their respective domains. A solution to
these constraints, i.e., a set of pairs associating variables to their value, constitutes a description
of a situation and the associated possible (or acceptable or desirable) recommendation.

While not as expressive as a natural language, first order logic with arithmetic is suitable
for directly expressing declarative properties of solutions which cannot be expressed in an im-
perative computer language. This universal mathematical language is taught to many students

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

in secondary schools. Fig. 1 and 2 show subsets of the vocabulary and formulas encoding
knowledge about triangles and quadrilaterals.

1 vocabulary {

2 type type constructed from {triangle, guadrilateral}
3 type subtype constructed from
4 { regular_triangle

5 , right triangle

6 , rectangle

7 , Square

8 , irregular}

9 Type : type
10 Subtype : subtype
11
12 Convex
13 Equilateral

Figure 1: Mode 1: Editing the vocabulary (partial view)

29 theory {

30 Vertices=3 <=> Sides=3.

31 Vertices=4 <=> Sides=4.

32 Type=triangle <=> Sides=3.

33 Type=quadrilateral <=> Sides=4.

34

35 // General rules

36 Sides=3 => Convex.

37 (vn[side]: n=Sides => Angle(n)<180) <=> Convex.

38 (¥n[side]: n=Sides => Length{n)=Length(l)) <=> Equilateral.

Figure 2: Mode 1: Editing knowledge as formulas (partial view)

In the second mode, the interactive consultant displays an interactive user interface that
makes it easier for the user to enter additional knowledge about a particular situation, and to
view the recommendation. This additional knowledge is entered in the form of additional con-
straints on the situation and possible decisions, and is converted to formulas by the interactive
consultant. These formulas will also have to be satisfied by the solution of the problem.

Ideally, this user interface is generated automatically from the general knowledge entered in
the first mode. Fig. 3 is a typical part of the interactive consultant in the second mode.

Convex n

Vertices 00

Vertices = hd

EJ vertices-3
u Vertices =4
n 0 < Vertices

Figure 3: Mode 2 (partial view)

A decision symbol is a symbol for which the user needs a value to make his decision in a
particular situation. To make a recommendation, the interactive consultant proposes values for
the decision symbols.

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

The interactive consultant elicits information that is relevant for the decision symbols in
the particular situation. An information is relevant if it can be used in a proof that a decision
symbol has a particular value in a solution. Such a goal-oriented interface is important to
reduce clutter when the problem has many data elements, or when the screen is small (e.g., for
use on mobile phone). However, the interactive consultant should not be too directive, because
users want to keep control of the interactions: the user should be free to choose the order in
which he provides information.

When the user enters relevant knowledge, the user interface is updated to reflect their logical
consequences, given the general knowledge for this class of problem entered in mode 1. At the
minimum, the user interface shows the updated range of values that a symbol may take. It
may also display new constraints between symbols, when such constraints become relevant.

The user can ask the interactive consultant to explain how it derives these consequences. It
lists the relevant information given by the user concerning the particular situation, as well as
the formulas in the knowledge base that lead to the derivation.

We recommend that the user interface do not allow entry of inconsistent information, i.e.,
information that makes the problem unsolvable. If it does allow it, and if the user does enter
inconsistent information, it should then explain why such information makes the problem un-
solvable, by showing which formulas cannot be satisfied. The user should be able to undo his
last entry.

The user can ask the interactive consultant to find a solution that maximizes a utility
function symbol, given the formulas. In simpler problems, the user may ask instead for any
concrete solution compatible with the general knowledge and the particular situation.

When enough information is entered, the values of the decision symbols become fixed: the
user can then see the recommendation for his decision. He can also obtain explanations on how
the recommendation was reached.

When insufficient information is entered to fix the decision symbols, the user should be able
to see an overview of the classes of possible solutions. For example, if he says that all angles
of a polygon are 90 degrees, without any further information, the interactive consultant should
be able to tell him that only rectangles and squares are possible, and what are the differences
between them. This can be done via abstract model generation, as we propose in this paper.

To respond to the user’s input, the interactive consultant performs various reasoning tasks
using logic and arithmetic. We now recall key concepts in these fields.

3 Logic with arithmetic

This section gives an overview of logic and arithmetic concepts that we use in this paper. For
more details, see [5].

Terms are expressions composed in a language whose vocabulary is a set of constant, function
and variable symbols. Atoms are expressions composed of a predicate symbol and zero or more
terms. The number of terms required by each predicate symbol is its arity. A proposition is
a predicate of arity 0. Ground atoms are atoms without variables. Quantifier-free formulas
are expressions composed of ground atoms and logic comnectives. Quantified formulas are
expressions composed of a quantifier, variable symbols, and another formula. A quantified
formula is well-formed if every variable symbol in it is within the scope of the quantifier that
declares it. Well-formed formulas, or just formulas, are expressions composed of ground atoms,
well-formed quantified formulas, and logic connectives.

A model consists of 1) a non-empty set, called the universe, and 2) a mapping of symbols in
the vocabulary to various elements of the universe, and to functions defined over the universe

4

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

(see [5] for details). The model determines a unique interpretation of the terms and formulas.
Here, we are interested in models that satisfy a given formula and the background theories
of equality and arithmetic. These background theories determine the interpretation of the
arithmetic symbols such as 7=", 7<”, ”+” or 70”. A model M satisfies a formula F if the
interpretation determined by M gives a true value to F and respects the laws of arithmetic. We
say that M is a model of F.
With this syntactic and semantic apparatus, we can now describe the various reasoning

tasks, or inferences[7], that the interactive consultant performs:

e the consequences of user’s choices are formulas that are true in all models compatible
with the formulas representing the knowledge of the situation; the search of consequences
is called model propagation;

e the explanation on how a consequence is inferred is given by the smallest set of formulas
describing the situation that is inconsistent with the negation of the consequence; the
search of such a set is called unsat-core extraction.

e the solution that maximizes a utility function is obtained by ranking all the models of
the formulas representing the knowledge of the situation by the evaluation of the utility
function in each of them; this maximization is called model optimization.

In this communication, we introduce another inference: abstract model generation. We now
describe what are abstract models and the method to obtain them.

4 Abstract models

We begin with some new definitions:

Definition 4.1. The set of atom@Qs of a vocabulary is the set of ground atoms and well-
formed quantified formulas that can be composed with that vocabulary.

Definition 4.2. The set of atomQs of a formula F in vocabulary V, noted AQ(F), is
obtained by applying these rules recursively:

*4f F is an atom@ of vocabulary V, then AQ(F) = {F};

*4f Fis =g, then AQ(F) is AQ();;

*if F is ¢1 X1 ¢y (where <1 is one of the binary logic connectives), then AQ(F) is AQ(¢1) U
AQ(42).

Definition 4.3.

Given p : A — P, a bijective function from the set A of atomQs of vocabulary V1 to a set
P of proposition symbols in vocabulary V2,

the propositional skeleton of formula F in V1 with p, noted PS,(F), is the formula in
V2 obtained by applying these rules recursively:

*if Fis an atom@Q of V1, then PS,(F) is p(F);

*if Fis —¢, then PS,(F) is " PS,(¢);;

*if Fis ¢1 X1 ¢g (where < is one of the binary logic connectives),

then PS,(F) is PSp(¢1) <1 PS,(¢2).

For example, the set of atomQs of p(a) = 3z : z < a) is {p(a), 3z : © < a}, and the
propositional skeleton can be written as p1 =— p2.

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

Definition 4.4. A LiteralQ is an atom@ or the negation of an atomQ.

Definition 4.5. An abstract model formula, AMF, is a conjunction of literalQs: M, L;.
An AMF is canonical if none of its literalQs can be removed without changing the set of its
models.

Definition 4.6. A disjunctive normal form formula with quantifiers, DNFQ, is either
False or a disjunction of AMFs: \/; \; Lij.

We can now state the following theorem.

Theorem 4.1. Any well-formed formula F can be rewritten in an equivalent DNFQ, composed
only of atom@s in the set of atom@Qs of F.

Proof. To every atomQs of F, we bijectively associate a proposition B; in a separate vocabulary.
We use these propositional symbols to build the propositional skeleton of F. It is well-known
that any formula in propositional logic can be rewritten in an equivalent disjunctive normal form
using double negation elimination, De Morgan’s laws, and the distributive law. By applying
the appropriate procedure, we obtain a DNF of the propositional skeleton. By replacing each
proposition in it by its associated atomQ, we obtain a DNFQ of F, composed only of atomQs
of F. We say it is a DNFQ of F, and it is equivalent to F. O

We can now explain why we call each disjunct of a DNFQ an abstract model formula: given
a formula F, each AMF of a DNFQ of F is a formula that describes a (possibly infinite) set of
models of F; and, taken together, all the AMFs describe all the possible models of F.

However, as in propositional logic, well-formed formulas have an infinite number of equiva-
lent DNFQs. Hence, the following definition:

Definition 4.7. A canonical DNFQ, denoted CDNFQ, is either False or \/, amf; such that:
* each amf; has at least one model, i.e., each AMF is consistent;
* no model of an amf; is a model of amf;, i # j, i.e., there is no overlap of AMFs;
* no literal@ of an amf; can be removed without changing the set of its models, i.e., each
AMEF is canonical.

A formula can still have several CDNFQs. For example, the CDNFQs of p could include p
and (p A q) V (p A —q) in a suitable vocabulary.

Theorem 4.2. Let A be a set of atomQs. Any DNFQ composed of atomQ@Qs in A can be
rewritten as a CDNFQ composed of atomQs in A.

Proof. This can be proven easily by defining a syntactic transformation of the DNFQ for each
case where a condition is not met: if an amf; does not have a model, we can safely remove it
from the DNFQ; if there is an overlap between amf; and amf;, we can replace them by the
canonical forms of am f; Aamf;, am f; A—am f; and ~amf; Aamf;; if a literalQ can be removed
from an AMF without changing the set of its models, we just do so. O

So, one method to find canonical AMFs of a formula F is to apply the syntactic trans-
formations we just described, to obtain first a DNFQ, and then a CDNFQ. Because some of
the AMFs obtained by such transformation may not have models consistent with arithmetic,
this method may be inefficient. To address this issue, we propose another method, as we now
describe.

Theorem 4.3. A CDNFQ of F is either False or of the form amfi V G,
where G is a CDNFQ of F' \ —mamf.

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

Proof. By definition, a CDNFQ of F is either False or of the form = \/:L:1 amf;. In the
latter case, we can prove that F' A —mamf, = \/:.:11 amf; by using the distributive law, double
negation elimination, and the fact that the AMFs do not overlap. By commutativity of the
conjunction, this result can be extended to any amf; of a CDNFQ of F, where j # n. The

theorem ensues. O

This theorem shows that we can build a CDNFQ of F recursively, by finding first an am f;
of F, then by building a CDNFQ of F'A—am f;. We can find an AMF of F by finding a concrete
model of F and “abstracting it” as we now describe.

Definition 4.8.
The abstract model formula for a concrete model M of formula F, amf™,

i8 Nacay @ N Noea—(—a) where
Ay (resp. A_) is the set of atomQs of F whose interpretation in M is true (resp. false).

Thus, the AMF of a concrete model of F is the conjuction of the atomQs of F' that are true
in M, and of the negation of the atomQs of F that are false in M.

Theorem 4.4.
If amfM is an abstract model formula for a concrete model M of formula F,
and if G is a DNFQ of F A —~amf™
then, amf™ v G is a DNFQ of F.

Proof. Since the formula proposed in theorem 4.4 is in DNFQ form, we just have to show that
it is equivalent to F, i.e., that any model of the proposed formula is a model of F, and vice
versa.

If a model I of the proposed formula does not satisfy amf, it must satisfy G, i.e, F A
—amfM, and thus F. If, on the other hand, it satisfies amf™, it must give the same inter-
pretation to each atomQ of F as model M does, by construction of amf™. Hence, using the
propositional skeleton of F, the interpretation of F in I must be the same as the interpretation
of F in M, which is true. Hence I is a model of F.

Similarly, we can show that every model I of F is a model of the proposed formula. This
is obviously the case if I satisfies amf™. If not, we have to show that it satisfies G, i.e.
F A —amfM, and thus F. This is true per hypothesis. O

Theorem 4.5.
For a formula F composed of n atom@Qs, any CDNFQ of F has at most 2™ AMFs.

Indeed, there are at most 2" ways to create non-overlapping AMF's with n atomQs. Hence,
any CDNFQ of a finite formula F is finite.

This allows us to propose a terminating method to compute a CDNFQ of formula F, as
shown in Table 1. Unlike the syntactic method, it does not generate any AMF inconsistent
with arithmetic.

Each amf is reduced by the reduce auxiliary function (line 8): it removes literals in amf
that can be removed without changing the set of models, in order to obtain the canonical form.
Methods used to find prime implicants (e.g., [8]) and minimum satisfying assignments (e.g., [9])
could be adapted for this purpose. For the sake of brevity, the reduce function is not further
described.

The project function (line 12) handles the special case where the atom(@ is undefined, i.e.,
where the model could be expanded by giving it a true or false value while still satisfying F.

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

Input: a formula F
Output: a CDNFQ of F

Procedure: 1 def CDNFQ(F):
2 solver = Solver()

M = solver.model()

amf = reduce(And([project(a;, M) for a; in atomQs]))
9 CDNFQ.append(amf)

10 solver.add(Not (amf))

11 return CDNFQ

Auxiliary 12 def project(atom@Q, model):
function 13t = model.eval(atomQ)
14 if t == True: return atomQ
15 elif t == False: return Not(atomQ)
16 else return True # (atom is undefined)

3 solver.add(F)

4 atomQs = list_of_atomQs_in(F)
5 CDNFQ =[]

6 while solver.check() == sat:

7

8

Table 1: Procedure to compute a CDNFQ of formula F (in python syntax).

A typical run of the algorithm for a simple formula F = (Subtype=regular-triangle &
(Sides=3 A Equilateral))! would find 3 concrete models, from which we create 3 abstract
models as shown in Table 2.

Concrete model m Abstract model formula amf
{Subtype,Sides,Equilateral}

{regular-triangle,3,true} Subtype=regular-triangleASides=3/AEquilateral
{other,3,false} Subtype#regular-triangleASides=3A—-Equilateral
{other,4,undefined} Subtype#regular-triangleASides#3

Table 2: Abstract models for Subtype=regular-triangle < (Sides=3 A Equilateral).

5 Implementation

Our implementation of the interactive consultant is based on prior work[6]. It has been used to
design industrial seals and to verify compliance with public tender regulations. It is available
online[1].

The user interface for mode 2 of the interactive consultant is automatically generated by
extracting the atomQs of the formulas entered in mode 1, and by using them as labels for
buttons and fields. The user interface supports most of the functionality described in Section
2, except the goal-oriented approach: the user can not say which symbols are decision symbols;
we elicit all information without prioritizing them by relevance.

la regular triangle is a triangle in which all three sides are equal

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

It uses the Z3 SMT solver[3] for the various inferences. The Z3 solver fully supports linear
arithmetic over integer and rationals, but has only partial support for quantifiers and non-linear
arithmetic (in the sense that it may or may not be able to solve formulas of that nature).

For demo purposes, it is configured with a knowledge base of triangles and quadrilaterals,
and helps a user answer questions about particular polygons, such as “is my polygon convex?”.
Because of the current partial support of non-linear arithmetic by Z3, it cannot compute surfaces
or coordinates of vertices. Other SMT solvers, such as ksmt[4], support non-linear arithmetic,
but not quantifiers.

6 Discussion

The abstract models proposed in this paper are useful in the two modes of the interactive
consultant.

In the editor mode, the user can select one or more formulas, and click “Check Code”: he
will get the abstract models for these formulas, in a tabular format.

For example, after selecting Subtype=regular-triangle < Sides=3 A Equilateral.,
the user is shown the table in Fig. 4. Each row describes one set of possible solutions, by listing
all the literalQs that must be true in each solution. Each cell shows the literalQs containing
the symbol of its column heading. The result is identical to the one in Table 2.

Abstract models X

Variables:

Subtype Sides Equilateral
Not Subtype = regular_triangle = Mot Sides=3
Not Subtype = regular_triangle Sides=3 Mot Equilateral

Subtype = regular_triangle Sides =3 Equilateral

Figure 4: Abstract models of the correct definition of regular triangle

If instead of using an equivalence in this formula, the user had incorrectly used an ”if”
(<), he would get the abstract models in Fig. 5. As one can see, the 4", 5" and 7" rows
are incorrect solutions. Thus, the user may (in)validate his knowledge base by inspection of
abstract models.

In the second mode, the user can enter information on his specific situation, and obtain the
list of abstract models, each one representing a set of concrete solutions. Unlike in the first
mode, abstraction in the second mode are based on all the formulas in the knowledge base. The
number of literalQs can thus be large. To increase the readability of the abstract models, we
separately display some literalQs, as in Fig. 6:

e the Given literalQs are those entered by the user in mode 2;
e the Consequences literalQs are direct consequences of the Given literals;

o the Irrelevant literalQs can be made true or false without creating an inconsistency;

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

Subtype Sides Equilateral

Not Subtype = regular_triangle | Mot Sides=3 Equilateral
Mot Subtype = regular_triangle = NotSides=3 | Not Equilateral
Not Subtype = regular_triangle Sides =3 Mot Equilateral
Subtype = regular_triangle Mot Sides=3 | Not Equilateral
Subtype = regular_triangle Sides =3 Mot Equilateral

Subtype = regular_triangle Sides =3 Equilateral

Subtype = regular_triangle Mot Sides =3 Equilateral

Figure 5: Abstract models of an incorrect definition of regular triangle

e the Universal literalQs are universally true, irrespective of the user’s choice. They are
consequences of the general knowledge of the problems.

In the polygon demo, after selecting the atom saying that all angles are right angles, the
user can see that there must be 4 vertices. After selecting ”Modelexpand / Show all models”
in the menu, he obtains the abstract models in Fig. 6. The two rows in the table show that the
polygons can now be only squares or rectangles. The second row has a quantified formula to
say that, in a square, all sides have the same length as the first side.

Without access to these abstract models, the user would need to see many concrete solutions
before coming to that conclusion.

If we had allowed the user to choose a decision symbol (e.g. ”Subtype”), we could display
this symbol and associated literalQs in the rightmost column of the table, and obtain a decision
table.

Abstract models x

Given:¥n[side] : n < Sides = Angle{n) = 90

Consequences:Vertices = 4,5ides = 4, Type = quadrilateral Angle(1) = 90,Angle(2) = 90,Angle(3) = 90,Angle(4) = 90,Mot Vertices = 3, Mot Sides
= 3,Mot Type = triangle,Convex,¥n[side] : n = Sides = Angle(n) < 180,Not Subtype = regular_triangle,Not ¥n[side] : n < Sides = Angle(n) =
60,Mot Subtype = right_triangle,3n[side] : n < Sides & Angle(n) = 50,Length(1) = Length(3),Length(2) = Length(4),Length(1) < Length(2) +
Length(3),Length(3) = Length(1) + Length{2)

Variables:
Length Subtype Equilateral
Length(1) £ Length(2) Subtype = rectangle | Not Equilateral
¥n[side] : Length{n) = Length(1) = n = Sides Subtype = square Equilateral

Irrelevant:Length(2) < Length(3) + Length(1)
Universal:Perimeter = sum{n[side]:n < Sides : Length(nj},sum{n[side]:n < Sides : Angle(n)} = (Sides - 2) * 180,0 < Vertices,0 < Sides,¥x[side] :
0 = Length(x),¥x[side] : 0 < Angle(x)

Figure 6: Polygons with right angles only

10

Abstract Model Generation in Interactive Consultant Carbonnelle and Denecker

7

Conclusion

We have described an interactive consultant capable of providing concrete as well as abstract
solutions to its user. This allows the user to easily evaluate the validity of abstract solutions,

ie.,

of sets of concrete solutions. Validating abstract solutions is more efficient for the user

than validating concrete solutions. Our approach thus helps build confidence in the validity of
the machine, a critical element in joint man-machine cognitive systems.

References

(1]
2]
3]
(4]
[5]

(6]

(7]

Abstract configuration tool. https://autoconfigparam.herokuapp.com/. Accessed: 2019-04-29.
Decision model and notation. https://www.omg.org/dmn/. Accessed: 2019-04-29.

The Z3 theorem prover. https://github.com/Z3Prover/z3. Accessed: 2019-04-29.

Franz Braufle, Konstantin Korovin, Margarita Korovina, and Norbert Th Miiller. A cdcl-style
calculus for solving non-linear constraints. arXiv preprint arXiv:1905.09227, 2019.

Sanjit A. Seshia Clark Barrett, Roberto Sebastiani and Cesare Tinelli. Handbook of satisfiability,
chapter Satisfiability Modulo Theories, pages 737-797. 10S press, 2008.

Ingmar Dasseville, Laurent Janssens, Gerda Janssens, Jan Vanthienen, and Marc Denecker. Com-
bining DMN and the knowledge base paradigm for flexible decision enactment. In RuleML (Sup-
plement), 2016.

Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker. Predicate
logic as a modeling language: the IDP system. In Declarative Logic Programming, pages 279-323.
Association for Computing Machinery and Morgan & Claypool, 2018.

David Déharbe, Pascal Fontaine, Daniel Le Berre, and Bertrand Mazure. Computing prime im-
plicants. In 2013 Formal Methods in Computer-Aided Design, pages 46-52. IEEE, 2013.

Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva. On finding minimum satisfying
assignments. In International Conference on Principles and Practice of Constraint Programming,
pages 287—-297. Springer, 2016.

David D Woods. Cognitive technologies: The design of joint human-machine cognitive systems.
Al magazine, 6(4):86-86, 1985.

11

https://autoconfigparam.herokuapp.com/
https://www.omg.org/dmn/
https://github.com/Z3Prover/z3

	Introduction
	Interactive consultant
	Logic with arithmetic
	Abstract models
	Implementation
	Discussion
	Conclusion

