Commentary on “Using Constraint Programming
and Local Search Methods to Solve Vehicle Routing
Problems”

Paul Shaw

September 2019

Large Neighbourhood Search! was an
idea that came to me in the spring of
1997 or thereabouts when I was work-
ing on a Kuropean project called “Green-
Trip” with Patrick Prosser and Philip
Kilby. The project was on vehicle rout-
ing problems and I had been looking at
insertion heuristics. The idea is that
you start with an empty routing plan
(except for the depot from which trucks
leave and to which they return), and you
add in customer visits one at a time be-
tween two existing visits on a truck until
you get to a full solution. According to
which position you add each visit, you
will get different solutions. Of course, at
least one of the sets of possible positions
will get you to an optimal solution (say,
lowest total distance). I spent countless
hours drawing circles and lines on paper
(erasing lines when I did some insertion),
trying to work out some good insertion
strategies.

At the time, there were a lot of
thoughts about decision repair in tree
search (at least where I was working),
probably brought about by the pub-
lication of limited discrepancy search
(LDS) [7] a couple of years before. LDS
was a really nice idea that allowed de-
cisions anywhere in the tree to be re-
paired, and was also in the same spirit
as iterative deepening—okay, you might
redo a little bit of work, but who cares?
LDS was for decision problems (finding
a single solution). But I had an opti-
mization problem and I wanted to ap-
ply a similar kind of thinking to it—

IThanks to Ian Gent for coming up with the
name!

I wanted to be able to repair some of
my insertion decisions? that I had made
when producing my solution. Just as
for depth-first search, it turns out that
you can easily adapt LDS to an opti-
mization problem by following the tree
traversal rule but not stopping when a
solution is found. You essentially just
keep the current best solution you find
in the search tree, all the while prun-
ing nodes that have a lower objective
bound greater than the value of the cur-
rent best solution. This produces a series
of progressively better solutions. I tried
this method using the LDS tree-traversal
strategy with my best insertion heuris-
tics, but the result was not great even
on the moderately-sized problems I was
looking at. But I kept that little back-
tracking code.

At some point I realized that using
LDS in this way on optimization prob-
lems wasn’t very clever. When LDS finds
a solution to a decision problem, it has
gained some information, namely it has
found out what heuristic it should have
been following instead of the left branch
of the search tree. But, since the search
is over, it can’t do anything with that
information. Now, with optimization
problems, you keep going to try to find
better solutions, so surely this informa-
tion could be useful? Also, as better and
better solutions are found, maybe the de-
cision paths followed to get to those so-
lutions indicate better and better heuris-
tics? This kind of heuristic updating

2Repairing an insertion decision means in-
serting the customer visit at a less preferred spot
than the original spot chosen by the heuristic.



has actually been used by methods such
as [8, 16]. I cannot recall why I did not
follow exactly that route at the time, but
I am glad I didn’t because I think LNS
is conceptually simpler.

I had a few different things in my head.
One was that repairing decisions regard-
less of when they were taken when build-
ing a solution was a good thing (and
probably even better was to not even
consider they were taken in any kind
of order in the first place—they were
just given). Another was that heuristics
probably work better when they don’t
have a lot of decisions to make (a corol-
lary of the logic used in LDS). The last
thing was that in GreenTrip, we were us-
ing a lot of local search, and so seeing
things through a local search lens was
more natural to me at the time than vi-
sualizing a search tree. Taking all these
things together, LNS seemed to me to be
the most natural thing in the world?:

Find a solution &
repeat for as long as desired
Undo some decisions in S creating 7
Try to complete 7 to U, an improvement
upon S, by taking more decisions
If U could be found, replace S by U
return S

The key part about LNS is the fact
that one typically uses some kind of tree-
based search mechanism to complete T
to U, which makes it particularly easy to
implement if you happen to have a CP
(or MIP) solver already. The backtrack-
ing code that I wrote for visit insertion
came in handy right there.

I remember feeling that I knew LNS
would work before I had coded it (at
least for routing problems). I had spent
so long playing around with circles and
lines on a notepad, I knew I could get
good solutions even manually by rub-
bing out some lines somewhere on the
pad and redrawing them as best I could.
The ever-wise lan Gent encouraged me
to write a paper, which became a tech-
nical report, and then was submitted to

3These kinds of ideas seemed really to have
been in the air: [11] and [18] are two good ex-
amples. At the time, I was not aware of anyone
else working on this kind of thing though.

CP-98 the next year.

I never did write a follow-up paper
dedicated to LNS in a more general set-
ting with a literature review and differ-
ent target problems: it just seemed like
such a dull thing to do. However, if
you are looking for an introduction, there
is [2, 14, 19], and for routing specifically,
I like [13]. There is now even a Cours-
era course by Peter Stuckey and Jimmy
Lee with a full section on LNS. Since
CP-98, LNS has been used extensively
in too many papers to cite: probably the
best thing is to use an internet search,
as new papers using LNS are being pub-
lished every year.

For me, the best part is that LNS has
become just as much a practical suc-
cess as an academic one, especially as
a complement to backtracking solvers.
Basically, I think this is because it is
easy to implement on top of a backtrack-
ing solver, and in many cases you can
get large improvements to solving speed.
I moved to ILOG in 1998 (just before
the CP-98 conference actually) and some
time after, LNS or LNS-inspired tech-
niques were being used in numerous dif-
ferent ILOG products and projects [3,
4, 5, 6, 9, 12]. T always enjoy hearing
about projects that have been given a
big boost by using LNS—often the sen-
timent is one of surprise that something
so simple could work so well.

Over the years, different methods of
making LNS “smarter” have been pro-
posed. To name a few: using reinforce-
ment learning [9, 15, 20], using infor-
mation from constraint propagation [12],
using information from the cost func-
tion [1, 10], and also the use of expla-
nations [17]. Since LNS is also just a hill
climbing algorithm, any meta-heuristic
techniques from the local search litera-
ture can be used with it too. This cre-
ates myriad possibilities for hybrid tech-
niques. Even though LNS is over twenty
years old, I still think there is life in the
old dog yet, both on the fundamentals,
and in applying LNS to real problems.

Last year, 2018, was a nostalgic
year for me as it was 20 years after
I published the LNS paper in 1998,
and 10 years after what I consider the



beginning of CP Optimizer in 2008.
Happily, I had the chance to talk about
both of these at two different venues in
June. In early June, I was invited to
give a talk on combinations of constraint
programming and local search at the
University of Toulouse. A good deal of
my talk was about LNS, with hints and
tips, and some ideas for future work.
You can find the slides I used and a
video of the talk at
http://www.cimi.univ-toulouse.fr/
optimisation/en/masterclass (You
need to go down to close to the bottom
of the page.) Near the end of June,
I gave a talk on “Ten Years of CP
Optimizer” at CP-AI-OR in Delft. You
can find those slides on slideshare.net
by searching for my name. LNS is a key
component of CP Optimizer, essential
to solving the real-world problems to
which CP Optimizer is applied every
day. I feel very lucky to have seen this
pencil-and-paper idea be realized in this
way.

References

[1] T. Carchrae and J. C. Beck. Cost-
based large neighborhood search.
In Workshop on the Combination
of Metaheuristic and Local Search
with Constraint Programming Tech-
niques, 2005.

[2] Tom Carchrae and J. Christopher
Beck. Principles for the design of
large neighborhood search. Journal
of Mathematical Modelling and Al-
gorithms, 8:245-270, 2009.

[3] A. Chabrier, E. Danna, C. Le Pape,
and L. Perron. Solving a network
design problem. Annals of Opera-
tions Research, 130:217-239, 2004.

[4] E. Danna and L. Perron. Struc-
tured vs. unstructured large neigh-
borhood search: A case study on
job-shop scheduling problems with
earliness and tardiness costs. In
Proceedings of CP 2003, pages 817—
821, 2003.

[5] E. Danna, E. Rothberg, and C. Le
Pape. Exploring relaxation induced
neighborhoods to improve MIP so-
lutions. Mathematical Programming
Series A, 102:71-90, 2005.

[6] D. Godard, P. Laborie, and W. Nui-
jten. Randomized large neighbor-
hood search for cumulative schedul-
ing. In Proceedings of ICAPS, pages
81-89, 2005.

[7] W. D. Harvey and M. L. Ginsberg.
Limited discrepancy search. In Pro-
ceedings of the 14th IJCAI pages
607-615. Morgan Kaufmann Pub-
lishers, 1995.

[8] N. Jussien and O. Lhomme. The
path-repair algorithm. In In CP-
98 Workshop on Large Scale Com-
binatorial Optimization and Con-
straints, pages 73-86, 1999.

[9] P. Laborie and D. Godard. Self-
adapting large neighborhood
search: Application to single-mode

scheduling problems. In Proceedings
of MISTA-07, pages 276-284, 2007.

Michele Lombardi and Pierre
Schaus. Cost impact guided Ins.
In Proceedings of CP-AI-OR 201/,
pages 293-300, 2014.

T. Mautor and P. Michelon. MI-
MAUSA: A new hybrid method
combining exact solution and local
search. In Second International

Conference on Meta-Heuristics,
1997.

[11]

L. Perron, P. Shaw, and V. Furnon.
Propagation guided large neighbor-
hood search. In Proceedings of CP
2004, pages 468-481, 2004.

[13] D. Pisinger and S. Rgpke. A general
heuristic for vehicle routing prob-
lems. Computers and Operations

Research, 34(8):2403-2435, 2007.

D. Pisinger and S. Rgpke. Large
neighborhood search. In M. Gen-
dreau, editor, Handbook of Meta-
heuristics, pages 399-420. Springer,
2010.



[15]

[16]

[17]

[19]

S. Reopke and D. Pisinger. An
adaptive large neighborhood search
heuristic for the pickup and de-
livery problem with time windows.
Transportation Science, 40:455-472,
2006.

S. Prestwich. Combining the scal-
ability of local search with the
pruning techniques of systematic
search. Annals of Operations Re-
search, 115:51-72, 2002.

Charles  Prud’homme, Xavier
Lorca, and Narendra Jussien.
Explanation-based large neigh-
borhood search. Constraints,
19(4):339-379, jul 2014.

G.  Schrimpf, J. Schneider,
H. Stamm-Wilbrandt, and
G. Dueck. Record breaking
optimization results using the
ruin and recreate principle. Jour-
nal of Computational Physics,
159:139-171, 2000.

Paul Shaw. Constraint program-
ming and local search hybrids. In
Michela Milano and Pascal van
Hentenryck, editors, Hybrid Op-
timization:  The Ten Years of
CPAIOR, pages 271-303. Springer,
2011.

Charles Thomas and Pierre Schaus.
Revisiting the self-adaptive large
neighborhood search. In Proceed-
ings of CP-AI-OR 2018, pages 557—
566, 2018.



