Constraint Modelling and the
Pursuit of the Holy Grail
(2017/18)

lan Miguel
University of St Andrews
ijm@st-andrews.ac.uk

Constraint Modelling and the Quest

e Constraint Modelling: The preparation of the description of a problem
of interest suitable for input to a particular constraint solver.

* Constraint Modelling/Solving in the broad sense here: a formalism for
describing and solving decision-making and optimisation problems.

* Decision variables and restrictions on compatible assignments.

* Crucial to the quest for the Holy Grail.
* Typically, there are many possible models for a given problem.
* E.g. Nadel’s 1990 study of the n-queens problem, many of the studies by Barbara Smith...

* The right choice of model can make the difference between a solution swiftly
obtained and being unable to solve the problem in a practical amount of time.

Modelling

* The preparation of the description of a problem of interest suitable
for input to a particular solver.

* A multi-stage process, starting from a
possibly ill-defined idea of what the
problem is.

Well-Defined Problem Statement e |tis pOSSib'E to engage with this
process starting at any level.

* But the higher up a non-expert can
begin and still obtain a solution to her
problem efficiently and automatically,
the closer we are to the grail.

llI-Defined Problem Statement

Solver-independent Constraint Model

Solver-specific Model

Modelling

* The preparation of the description of a problem of interest suitable
for input to a particular solver.

=SS

lll-Defined Problem Statement e We will set aside the process of
‘ L knowledge elicitation/constraint

Well-Defined Problem Statement aCQU|S|t|On-

Solver-independent Constraint Model

Solver-specific Model

Modelling

* The preparation of the description of a problem of interest suitable

for input to a particular solver.

llI-Defined Problem Statement

Well-Defined Problem Statement

Solver-independent Constraint Model

Solver-specific Model

=SS

* MiniZinc, Essence Prime, OPL, ...

* Primitive variables (Booleans,
integers, perhaps sets) and
collections.

* Quantification/comprehension.

™« Arithmetic, logical operators,

global constraints.

* Not focused on a particular
solver.

Modelling

* The preparation of the description of a problem of interest suitable
for input to a particular solver.

* Library embedded in a host

‘ language, e.g. Choco, Gecode.

+ Solver with own input language,

e.g. Minion.
Solver-independent Constraint Model * Beyond constraint solvers:

‘ e SAT, MIP, local search, ...

Solver-specific Model

Obtaining High Quality Models

Obtaining High Quality Models: Abstraction
 How do we obtain high quality

‘ models from a well-defined problem
statement?
* One approach is to insert an extra

‘] step to allow the user to write
abstract constraint specifications.

Abstract Constraint Specification — « E.g. Zinc, Essence.

* Abstraction: capturing the problem

- without committing to modelling
Solver-independent Constraint Model decisions.
* By providing types that match
frequently occurring combinatorial

Solver-specific Model struqture, suc.h. as (multi)set, function,
relation, partition.

Example: The Social Golfers Problem

* Problem Statement:

* In a golf club there are a number of golfers who wish to play togethering
groups of size s.

* Find a schedule of play for w weeks such that no pair of golfers play together
more than once.

* In fact, this is an example of a combinatorial design, well studied in
mathematics.

Example: Social Golfers Essence Specification

given w, g, s : int(l..)

 We have not committed to a
model of the schedule (a set of

find sched : set (size w) of partition partltlons)

letting Golfers be new type of size g * s

(regular, numParts g, partSize s) from Golfers

* We can produce different

Cuch that models qf this specification

forAll g1, g2 : Golfers, gl < g2 . automatically and transparently
(sum week in sched . tO the user.

toInt (together ({gl, g2}, week))) <=1

 See Conjure/Savile Row tutorial
by Akgun & Nightingale at
CP’18.

Obtaining High Quality Models: Abstraction
* The process of refining a solver-

‘ independent model from an abstract
specification can be automated.
Well-Defined Problem Statement * Encodes modelling expertise.
‘ * How to model a function, partition etc.
* Model selection heuristic/from training

Abstract Constraint Specification instances.

* Further advantages:

e detect and break symmetry as it is
Solver-independent Constraint Model introduced.

‘ e Streamlining.
* Neighbourhood Generation for Local

Solver-specific Model Search.

Example: Automated Symmetry Breaking

given w, g, s : int(l..) * Consider modelling the outer set as
letting Golfers be new type of size g * s d matrlx Wlth W entrles
* Each represents a partition of golfers.
find sched : set (size w) of partition * Aset has no indiceS,' a matrix does.
(regular, numParts g, partSize s) from Golfers ° ThIS mOde“ing Step introduces
symmetry.
such that .. * By recognizing this we can immediately

add constraints to remove it.
* No “detection” necessary.
—nn * Reasoning at the problem class level.
- 72 7E 3 * See Conjure/Savile Row tutorial by
Symmetrically equivalent to: Akgun & nghtlngale at CP18.

———-— Symmetry can also be

detected/broken in constraint
models.

* See Codish et al. ‘18, Mears et al. ‘09.

Example: Automatic Streamliner Generation

 Streamlining: addition of “uninferred” constraints designed to reduce
significantly the search space while permitting at least one solution.
» Effective streamliners found by hand — see Le Bras et al. CP’14, 1JCAI'13.

* We can exploit the structure apparent in an abstract specification to
generate powerful candidate streamliners automatically.

* E.g. if we know we are looking for a relation we can try looking for relation that is
symmetric, transitive, reflexive, etc.

* E.g. 2:if we know we are looking for a function we can require it to be monotonically
in/decreasing, or constrain the function domain or range.

* Performing the same steps directly on a constraint model would require us to
recognise the particular model of relation/function first.

e See Spracklen et al. CP’18, Wetter et al. CP’15.

Example: Neighbourhood Generation for
Local Search

* Effective local search relies on high quality neighbourhoods to guide
modifications to an active solution.

* Such neighbourhoods can be derived directly from the constraints in
a model.
* E.g. Bjordal et al. for MiniZinc, Constraints 2015.
* Powerful neighbourhoods can also be derived from the structure in
an abstract specification.
* E.g. move golfers between parts of a partition in the Social Golfers example.
* While always maintaining the partition structure.
* See Akgun et al. IJCAI'18, Attieh et al. ModRef’18.

Obtaining High Quality Models: Reformulation

Ill-Defined Problem Statement ° Another approach is to tra nsform
or reformulate an initial model to

Well-Defined Problem Statement IMpProve Its performance.

 Rewrite a set of constraints to
obtain better propagation.

Abstract Constraint Specification . . .
: * E.g. Clique of disequalities ->

|‘|'|‘|‘|

alldifferent.
Solver-independent Constraint Model * See also: Leo et al. CP’13, Bessiere
et al. JCAI'07.
* Implied constraints: Arafailova et al.
Solver-specific Model This workshop.

Example: Automatic Tabulation.

* Tabulation: aggregate a set of constraint expressions into a single table
constraint.

* To exploit efficient table constraint propagators that enforce generalised arc
consistency.

» Typically a stronger level of inference than is achieved for a logically equivalent

collection of separate constraints. R

 Knight’s Tour (linking position variables x and y): N

(|x%n-y%n| =1 and |x/n-y/n| =2)OR |

(|x%n-y%n| =2 and |[x/n-y/n|=1) « R

* CP solvers generally treat occurrences of x as independent - poor propagation

* Identify promising sets of expressions to tabulate heuristically:
* E.g. expressions with duplicate variables, or otherwise likely to propagate weakly.

» See Nightingale et al. CP’18, Dekker et al. Constraints 17, “strong”
annotation in CPLEX Optimizer.

Obtaining High Quality Models: Reformulation
* Another approach is to transform or

‘ reformulate an initial model to improve
its performance.

* Common Subexpression Elimination:

‘ * Simplest form: avoid flattening two identical
subexpressions x + y to separate auxiliary
Abstract Constraint Specification variables.

* More sophisticated: reformulate to reveal
common subexpressions, associative-

Solver-independent Constraint Model commutative matching.

‘ __* See Nightingale et al. AlJ ‘17,
Conjure/Savile Row and MiniZinc tutorials

Solver-specific Model CP’18.

Obtaining High Quality Models: Reformulation
 Another approach is to transform or

‘ reformulate an initial model to

improve its performance.

* Dominance-breaking constraints.

‘ * Generalises symmetry breaking.

* Dominance relations describe pairs of
assignments where one is at least as
good as the other with respect to
satisfiability or the objective function.

- . ? two items with same weight but
Solver-independent Constraint Model differing value in a knapsack problem.

‘ L * See Guns et al. ModRef "18, Mears &
de la Banda IJCAI ‘15, Chu & Stuckey

H {
Constraints *15.

Abstract Constraint Specification

Obtaining High Quality Models: Feedback Loops

‘ Use a solver to process an initial
model. Information gained used

to strengthen the model.

"' * E.g. Savile Row uses Minion to

enforce Singleton Arc Consistency

* Domain reductions can trigger, e.g.,
common subexpression elimination.
Solver-independent Constraint Model * See Nightingale et al. AlJ 2017.

‘ * See also:
T ok Tack DLAT
e Zeighami et al. CP’18.
‘ — * Simonis’ tutorial ModRef’18.

Solver
[|

Conclusions

* Automated modelling is central to the pursuit of the holy grail.

* Modelling is a conduit to other related disciplines:
* SAT, SMT, MIP, ASP, local search, ...
* This brings new challenges in finding effective encodings to these formalisms.
e But the flexibility this affords brings us closer to the grail.

* Modelling & Solving: a symbiosis.

* Can exploit Machine Learning in a variety of contexts:
* Model, streamliner, reformulation selection...

