
User-Oriented Solving and Explaining
of Natural Language Logic Grid Puzzles

Jens Claes1, Bart Bogaerts2, Rocsildes Canoy2, Tias Guns2

1 jensclaes33@gmail.com
2 Vrije Universiteit Brussel, firstname.lastname@vub.be

Abstract
Inspired by the 2019 Holy Grail Challenge, we present ZE-
BRATUTOR, a mostly automated tool that solves a logic grid
puzzle (also known as a Zebra puzzle) given the clues in nat-
ural language clues and a list of the entities in the puzzle.
The challenge is to both handle the natural language input,
and to produce a human-understandable explanation of how
the solution is obtained. We achieve this by translating the
natural language clues into logic using a typed version of the
semantical framework of Blackburn and Bos. The logical rep-
resentation is then used in a novel explanation-based reason-
ing procedure, on top of the IDP knowledge base system. A
novel aspect of the explanation is that it is ordered by mental
effort required to understand the reasoning step, which is es-
timated by the number of previously derived facts needed to
derive new facts. The outcome is a stepwise visualisation of
the clue(s) used and the resulting changes on the grid. This
can be used both to solve a puzzle, or as a step-wise ‘help’
function for people stuck while solving a puzzle.

1 Introduction
Automated problem solving is central to the research field
of Artificial Intelligence. A common assumption here is that
the problem is unambiguously specified as a problem spec-
ification (sometimes called model) in a formal language.
However, formulating such a specification is non-trivial, and
for human beings it is much easier to specify problems in
natural language.

Natural language processing (NLP) (Manning, Manning,
and Schütze 1999) is the subfield of AI concerned with
processing and ultimately understanding natural language.
Problem solving starting from natural language input has
been studied for simple mathematical problems in the sub-
field of word problem solving or natural language mathemat-
ical problems (Mukherjee and Garain 2008).

We here aim to study natural language combinatorial
problems, both from human-produced input (e.g. natural
language) and for human-understandable output (in our
case, visualisations), as per the Holy Grail 2019 challenge.1
Generating human-understandable output to logic grid puz-
zles has initially been explored by Sqalli and Freuder (1996).

1https://freuder.wordpress.com/pthg-19-the-third-workshop-
on-progress-towards-the-holy-grail/

We present ZEBRATUTOR, an end-to-end solution for
solving logic grid puzzles (also known as Zebra puzzles) and
for explaining, in a human-understandable way, how this so-
lution can be obtained from the clues.

ZEBRATUTOR2 starts from a plain English language rep-
resentation of the clues and a list of all the entities present
in the puzzle. It then applies NLP techniques to build a
puzzle-specific lexicon. This lexicon is fed into a type-
aware variant of the semantical framework of Blackburn
and Bos (2005; 2006), which translates the clues into dis-
course representation theory (Kamp 1988). This logic is
further transformed to a specification in the IDP language
(De Cat et al. 2016), an extension of first-order logic. The
solver underlying IDP (called MINISAT(ID)) is a lazy-
clause generation solver supporting among others recursive
definitions (De Cat et al. 2013).

It then uses this formal representation of the clues both to
solve the puzzle and to explain the solution. There are many
different ways in which such a system could explain itself.
For instance, after finding a solution, it can explain 1. why
that is a solution or 2. why there are no other solutions; addi-
tionally, it can explain 3. how the system found this solution,
and 4. how a human could find this solution.

Our system implements this last type of explanation. In
contrast to how the system found the solution, it focuses on
simplifying the explanation itself, rather than giving insights
in the actual search algorithm used by IDP. As such, our
explanations are not to be used for understanding the inner
workings of the solver, but rather are to be used by people
interested in solving logic puzzles.

In generating explanations and choosing the order in
which the reasoning steps are explained, we chose to order
by an estimate of mental effort required to follow the rea-
soning step. Each reasoning step is visualised as the clue(s)
involved and the resulting changes on the grid.

When solving such puzzles, it can either be used for ex-
plaining how to obtain an entire solution, or for providing
help to users who are stuck during the solving process. In-
deed, our explanation method will, given a partial solution,
find the easiest next derivation to make.

2ZEBRATUTOR is an extension of software originally devel-
oped in the context of a Master’s thesis (Claes 2017).



2 System Overview
The input to ZEBRATUTOR is a set of natural language sen-
tences (from hereon referred to as “clues”), and the names
of the entities that make up the puzzle, e.g. Englishman, red
house, Zebra, etc.

In typical logic grid puzzles, the entity names are present
in the grid that is supplied with the puzzle. For some puzzles,
not all entities are named or required to know in advance; a
prototypical example is Einstein’s Zebra puzzle, which ends
with the question “Who owns the zebra?”, while the clues
do not name the Zebra entity, and the puzzle can be solved
without knowledge of the fact that there is a zebra in the first
place.

Steps Our framework consists of the following steps, start-
ing from the input:

A Part-Of-Speech tagging: with each word a part-of-speech
tag is associated.

B Chunking and lexicon building: a problem-specific lexi-
con is developed.

C From chunked sentences to logic: using a custom gram-
mar and semantics a logical representation of the clues is
constructed.

D From logic to a complete IDP specification: the logical
representation is translated into the IDP language and
augmented with logic-grid-specific information.

E Explanation-generating search in IDP: we exploit the
IDP representation of the clues to search for simple ex-
planations as to how the puzzle can be solved.

F Visualisation of the explanation: the step-by-step expla-
nation is visualized.

The first three of these steps are related to natural lan-
guage processing and are discussed in detail in the next sec-
tion. Step D is explained in Section 4; there we also briefly
explain how the representation obtained at that point can be
used to automatically solve the puzzle. The last two steps are
related to explanations and are presented in Section 5.

3 Natural Language Processing
Step A. Part-Of-Speech tagging
The standard procedure in Natural Language Processing is
to start by tagging each word with its estimated Part-Of-
Speech tag (POS tag).

We use the standard English Penn Treebank II POS tagset
(Marcus, Santorini, and Marcinkiewicz 1993). As POS tag-
ger we use NLTK’s built-in Perceptron tagger3. It uses a sta-
tistical inference mechanism, trained on a standard training
set from the Wall Street Journal. Since any POS-tagger can
make mistakes, we make sure that all of the puzzle’s entities
are tagged as noun.

3http://www.nltk.org

Step B. Chunking and lexicon building
To use the Blackburn & Bos framework (Blackburn and Bos
2005; 2006), a lexicon and a grammar have to be provided,
where the lexicon assigns a role to different sets of words,
and the grammar is a set of rules describing how words can
be combined into sentences. The grammar is constructed for
logic grid puzzles in general and not puzzle specific; the lex-
icon is partly problem agnostic and partly puzzle-specific.

We constructed a set of 12 lexical categories (Claes 2017).
The 3 puzzle-specific categories are: proper nouns, namely
the individual entities that are central to the puzzle, other
nouns that refer to groups of entities (like house, animal)
and transitive verbs that link two entities to each other.

The other categories are general and contain a built-in list
of possible members. The categories are determiner, num-
ber, preposition, auxiliary verb, copular verb, comparative
and some*-words (somewhat, sometime, ...), and conjunc-
tion. Because of space constraints, we refer the reader to the
full master thesis for the full details on these categories.

The goal of this second step is hence to group the POS-
tagged words of the clues into chunks that are tagged with
one of the above lexicon categories. This process is known
in the NLP community as chunking. We use NLTK and a
custom set of regular expressions for chunking the proper
nouns and different types of transitive verbs.

The result is a lexicon, which is needed as input to the
subsequent step in our framework. However, the POS tag-
ging may be inaccurate and the chunking may also miss
certain cases. Furthermore, logic puzzle authors are keen to
use word play or seemingly ambiguous sentences to make
the puzzle more interesting, but that require general world
knowledge. For example, using ‘in the morning’ to refer to
a timeslot at 11:00 when all other timeslots are after 13:00.

The automatically generated lexicon is hence tested as de-
scribed in the next step, and if some clues can not be trans-
formed into logic, the user is asked to update the lexicon or
rewrite a clue. For example, to replace ‘in the morning’ by
‘at 11:00’ in the earlier example.

Step C. From chunked sentences to logic
The Blackburn and Bos framework requires a lexicon (dis-
cussed in the previous paragraph) and a grammar, each
equipped with a suitable semantics. The framework is based
on the λ-calculus and Frege’s compositionality principle.
Every word has a λ-expression as its meaning. The mean-
ing of a group of words is a combination of the meaning
of the words that are part of the group. In this framework,
λ-application is used to combine the meaning of words.

We constructed a grammar based on the first ten logic grid
puzzles from Puzzle Baron’s Logic Puzzles Volume 3 (Ry-
der 2016). We observe that the determiners in the logic grid
puzzles we studied are simple in that only existential quan-
tifiers are necessary. Universal quantification is not needed
as the puzzles always fully classify their entities. This is a
consequence of the fact that all relations described in these
puzzles are bijections between the different domains. There
is always exactly one person who, for example, drinks tea.
For the same reason there is also no negative quantifier. Sen-



tences like “No person drinks tea” do not occur in the puz-
zles we studied.

Since it would distract us from the core message of this
paper, we do not detail the actual grammar rules here but
refer the the Master thesis this paper builds on (Claes 2017)
for more information.

Most grammar rules are quite general. They can be used
outside logic grid puzzles as well. Others, like the grammar
rule for a sentence with template “Of ... and ..., one ... and
the other ...”, are specific for these types of puzzles. The
introduction to the logigram booklet (Ryder 2016) explic-
itly mentions this template and explains how this template
should be interpreted. This interpretation is incorporated in
the semantics of the grammar rule covering this template.

Some other more specific rules include an alldifferent
constraint (“A, B, and C are three different persons”) and
a numerical comparison (“John scored 3 points higher than
Mary”).

The semantics of most rules consists only of λ-
applications. Some rules are more complex. Those excep-
tions are either because the scope of variables and negations
would otherwise be incorrect or because the grammar rule is
specific to logic grid puzzles and can not be easily explained
linguistically. This linguistic shortcut is then visible in the
semantics.

Compared to the original Blackburn and Bos frame-
work (Blackburn and Bos 2005; 2006), we added type in-
formation. In natural language, it is possible to construct
sentences that are grammatically correct but without mean-
ing. E.g. “The grass is drinking the house”. The grass is not
something that can drink and a house is not something that
can be drunk. We say the sentence is badly typed. Based on
grammar alone, we can never exclude these sentences.

The output of the framework is a (typed variant of) dis-
course representation theory (Kamp 1988).

4 Solving Logic Grid Puzzles
Before detailing how we construct a complete specification,
we give a very brief introduction to the IDP system. More
information can be found in (De Cat et al. 2016).

Preliminaries: the IDP system
The IDP system (De Cat et al. 2016) is a knowledge base
system (Denecker and Vennekens 2008) for a rich exten-
sion of first-order logic. In practice, when problem-solving
with IDP, one typically makes use of the following compo-
nents: vocabularies, theories, structures, inference methods,
and procedures. A vocabulary is (as in standard first-order
logic) a set of symbols. In IDP these symbols are further-
more typed. A (complete) structure over a vocabulary is an
assignment of values (of the right type) to symbols (for in-
stance, a set of tuples to a predicate symbol), this is typi-
cally called a variable assignment or candidate solution in
CP. A partial structure may in addition contain partial in-
formation, such as (1, 1) is an element of the interpretation
of P and (2, 1) is not, without fully specifying the interpre-
tation of P ; in a CP context, it can be seen as the current
domain of each symbol. Partial structures are ordered ac-
cording to precision. Intuitively, S1 is more precise than S2

(notation S1 ≥p S2) if S1 contains at least all information
S2 contains. A theory in IDP is an expression in an exten-
sion of first-order logic. It represents a piece of information
(for instance, a clue) but does not represent a problem; it can
be seen as a (sub)set of constraints in CP. In order to solve
a problem using this knowledge, we make use of inference
methods (solvers), which are generic algorithms that tackle
a task given some of the aforementioned components. Some
commonly used inference methods are:
• modelexpand(T,S) This method takes as input a theory

and a partial structure S, it returns one or more (depending
on options) structures that are more precise than S and
that satisfy T .

• optimalpropagate(T,S) This inference method takes as
input a theory T and a partial structure S, it returns the
most precise partial structure S′ that approximates all
models of T that expand S (i.e., such that for each model
M of T with M ≥p S, it holds that S′ ≤p M ). Thus, S′

contains all consequences derivable from T starting from
the structure S.

• unsatstructure(T,S,V) This inference method takes as in-
put a theory T and a structure S and optionally a vocab-
ulary V , whereby T has no models more precise than S,
that is, the combination of T and S has no solution. It re-
turns structure S′ less precise than S, but equal to S out-
side V such that T still has no satisfying solution more
precise than S′; furthermore the returned structured is
minimally precise among such structures. Intuitively, this
inference methods finds the reason for the inconsistency:
it explains why there are no models of T expanding S by
identifying a minimal set of facts in S that cause the lack
of satisfying solutions. Internally, this is implemented us-
ing unsatisfiable core extraction (Lynce and Silva 2004).

Finally, IDP provides built-in support for the lua scripting
language, where all above components are first-class citi-
zens. Lua procedures are typically used to glue together dif-
ferent calls to different inference methods to solve an actual
problem.

Step D. From logic to a complete IDP specification
In order to build a complete specification of the puzzle
from the Discourse Representation Theory(DRT) returned
by the typed Blackburn and Bos framework, we compute
the interpretation of the different types. As mentioned be-
fore, the list of entities occurring in the puzzle needs to be
given to build the lexicon. If additionally they are also par-
titioned in types (this information can e.g., be taken from
a grid-representation), nothing else needs to be done here.
If the partitioning of the entities in types is not given, we
use type inference to compute an equivalence relation on
the set of proper nouns occurring in the clues (two proper
nouns are equivalent if they occur in the same position of
a verb/preposition; for instance if “the Englishman smokes
cigarettes” and “the person who owns a dog does not smoke
cigars” we derive that cigars and cigarettes are nouns of the
same type). It might happen that this does not yield enough
information to completely determine the types for two rea-
sons. First of all, not all proper nouns might occur in the



clues (for instance the zebra in Einsteins famous zebra puz-
zle). However, since the solution of a logic grid puzzle is
always unique, there can at most be one such missing entity
per type (otherwise by symmetry there would be multiple
solutions) and hence, we can then simply add an anonymous
element. Secondly, there might be a large variation in the
verbs used to denote the same relation. In that case, without
using knowledge on the partitioning of entities, we cannot
decide which entities belong to the same type. Our system
then queries the user to ask which verb are – for the purpose
of the puzzle – synonyms.

Once the types are completed, we construct the IDP vo-
cabulary containing: all the types and a relation for each
transitive verb or preposition. For instance if the clues con-
tain a sentence “John lives in the red house”, then the vo-
cabulary will contain a binary relation livesIn(·, ·) with the
first argument of type person and the second argument of
type house. Additionally, we ensure that there is at least one
relation between each two types, even if this relation does
not occur in the clues. This is not important for solving the
puzzle, but it plays an important role in explaining (more on
that follows in the next section). The interpretation of the
types is encoded in IDP by means of a constructed type. A
constructed type consist of a set of constants with two extra
axioms implied: Domain Closure Axiom (DCA) and Unique
Names Axiom (UNA). DCA states that the set of constants
are the only possible elements of the domain. UNA states
that all constants are different from each other.

After the vocabulary, we construct IDP theories:
• we translate each clue into the IDP language, and
• we add implicit constraints present in logic grid puzzles.

The implicit constraints are stemming from the follow-
ing: First of all, our translation might generate multiple rela-
tions between two types. For instance if there are clues “The
tea drinker is from France” and “The person who owns a
dog lives in England”, then the translation will create two
relations from and livesIn between persons and countries.
This happens regularly since logigram designers tend to vary
their vocabulary to keep the puzzles interesting. However,
we know that there is only one relation between two types,
hence we add a theory containing synonymy axioms; for this
case concretely:

∀x∀y : livesIn(x, y)⇔ from(x, y).

Similarly, if two relations have an inverse signature, they
represent the inverse functions (for instance isOwnedBy and
likes) in the clues “The Englishman likes cats” and “The dog
is owned by the Belgian”). In this case we add constraints of
the form

∀x∀y : likes(x, y)⇔ isOwnedBy(y, x).

Next, we add axioms that state that each relation between
two types is actually a bijection, e.g.

∀x : #{y | from(x, y)} = 1.

∀y : #{x | from(x, y)} = 1.

Finally, we add transitivity axioms that link the different re-
lations. For instance if the dog is kept in the red house and

the Englishman lives in the red house, then the Englishman
keeps a dog. This kind of axioms is expressed as:

∀x∀y∀z : keptIn(x, y) ∧ livesIn(z, y)⇒ keeps(z, x).

Solving the puzzle The conjunction of all the logical theo-
ries created in the previous paragraph completely character-
izes the constraints underlying a logic grid puzzle. In order
to solve the puzzle, we use IDP’s built-in model expansion
inference, which searches for a solution in a given finite do-
main. Under the hood, IDP uses MINISAT(ID) (De Cat et
al. 2013), a solver using SAT (Marques Silva, Lynce, and
Malik 2009) and CP (Apt 2003) technology, in particular
lazy clause generation (Stuckey 2010) and conflict-driven
clause learning (Marques-Silva and Sakallah 1999). In our
experience, the solving part is often quite trivial for logic
grid puzzles, since they are usually crafted to be solvable
using the grid and single clues.

5 Explaining Logic Grid Puzzles
Step E. Explanation-generating search in IDP
A part of the holy grail challenge was not to just solve the
puzzle from the natural language specification, but also to
explain how the solution was obtained, or rather, to explain
how a human could obtain this solution as well.

The idea of our explanation approach is that we will grad-
ually fill the logigram grid with more and more information.
The explanation is hence a series of reasoning steps, and at
each step, information is added that can be obtained by rea-
soning on the clues and by using the partial solution obtained
so far.

Simple Explanations In order to make the explanations as
simple as possible we order the reasoning steps (derivations)
in the following way:
• Derivations that can be made without using any clues are

always prioritized. These derivations are made solely us-
ing logigram axioms, such as the fact that all involved
predicates are bijections as explained above.

• Next, derivations that require one or more clues are exe-
cuted, where fewer clues are preferred.

• Within both of the above classes, we always prioritize
derivations that can be made by as little as possible in-
formation, that is, using as few as possible of the fields in
the grid that have been filled already (see below for details
on how to compute this).

It deserves to be noted that in the examples we encountered,
it sufficed to only consider derivations that use at most one
clue. This is probably due to puzzle designers making their
puzzles easy enough. However, we can craft artificial exam-
ples in which that does not work, as illustrated next.
Example 5.1. Consider the following two clues of a logic
puzzle.

“Either the Englishman lives in the red house with the
fish, or he lives in the green house with the dog. ”
“If the Russian is a tea drinker, then the Englishman
keeps a dog in the red house.”



From these two clues, it follows that the Russian is not a tea
drinker, but this can not be obtained by isolated reasoning
over the two clues separately and at each step only deriving
information that is present in a logic puzzle grid. N

Implementation In order to implement this, we ensured
that our automatic translation contains a separate logical the-
ory for each clue, so that we can reason over the clues sep-
arately. For this, we made use of IDP’s procedural interface
(based on the lua scripting language) in which theories and
structures are first-order citizens, and of the built-in infer-
ence methods described above.

These methods are used as follows. Our procedure main-
tains a partial structure S representing the current state of
the grid.4 At each point in time, for all sets of clues of a
given size n (starting with n = 0), all consequences (value
assignments) of the conjunction of this set of clues are com-
puted with optimalpropagate. If there are no consequences,
the same is repeated for a greater n. For each of the conse-
quences, a minimal set of facts from the partial structure S
that entail this consequence is computed using unsatstruc-
ture (this is done by making the consequence false in S and
using V to disallow changing this consequence in the out-
come of the unsatstructure-call). The result is a set of pairs
(S′, clues, fact) where S′ is a substructure of S such that
from the set of clues clues and S′ the fact fact followed; for
all computed facts. Among those, a cardinality-minimal set
S′ is selected and its propagation is executed and added to
the list of derivations that make up the explanation. After-
wards, the procedure starts over with n = 0.

Propagation Strength One important thing to note here is
that when we apply propagation, we do not do it on a theory
that only contains the clues in question. Instead, that theory
always also contains all logigram axioms (bijections, transi-
tivity, etcetera). The reason is that clues by themselves rarely
propagate. To illustrate this, let us consider some examples.

Example 5.2. Consider the clue “The patient who was pre-
scribed enalapril is not Heather”. If one were to manually
translate this clue into first-order logic over the given vocab-
ulary, one would probably come up with:

¬prescribed(heather, enalapril). (1)

However, our automatic parsing method makes an explicit
mention of “the person who” in the form of a logic variable
and instead produces

∃p : prescribed(p, enalapril) ∧ p 6= heather. (2)

If the system were given the clue “Heather was not pre-
scribed enalapril”, the system would find (1). Equations (1)
and (2) are not equivalent and in fact from (2) it does not fol-
low that heather is not prescribed enalapril. That is... unless
the fact that there is exactly one person who is prescribed

4Since such a structure interprets all the predicates, which are
binary relations between two types, a partial structure indeed cor-
responds nicely to a partially filled grid.

enalapril is taken into account. In conjunction with the the-
ory stating that all predicates are bijections, these two equa-
tions are equivalent. N

Example 5.3. Consider the clue “The owner of the lime
house was prescribed enalapril”, which is translated into
first-order logic as:

∃o : lives in(o, lime) ∧ prescribed(o, enalapril). (3)

This clue actually gives information about the relation be-
tween houses and medication. However, it is clear that from
(3) alone we cannot propagate such information: it does not
even mention the predicate that links houses and medica-
tions. However, in combination with the transitivity and bi-
jection axioms, we can propagate that

¬used in(enalapril, lime). N

F. Visualisation of the explanation
We explored two different possibilities to present this expla-
nation to humans. The first was generating natural language
sentences of the form “From the clue(s) 〈clue〉 and the fact
that 〈assumptions〉, it follows that 〈conclusions〉.” However,
in our experience, as soon as there are a couple of assump-
tions involved, this kind of sentence easily becomes hard to
read and understand. Furthermore, it is not always easy to
create these sentences: if the input does not mention a name
for the relation between medication and houses, how can we
express that enalapril is not used in the lime house? There
are two possibilities to do that, the first is using a generic
verb such as “associated with” (rendering boring sentences);
the second is avoiding the relation and for instance writing
“the user of enalapril does not live in the lime house”.

Overall, we were not satisfied with the outcome of this
first approach, which is why we implemented a different
way to present the explanation process to the user, namely
by means of a visualisation. To represent our derivations,
we make use of the standard grid in logic puzzles. In each
step, we indicate which clue(s) are used, highlight all cells
used for the propagation in blue and all conclusions in green.
The user can then navigate through the reasoning process by
means of “next” and “previous” buttons.

Figure 1 contains a screenshot of this explanation process.
It displays a partially filled grid, in which checkmarks rep-
resent that something is derived to be true and minus signs
that it is false. In this specific frame, we can see that the
clue “Roxanne is 2 years younger than the Kansas native” is
used, together with the previously derived knowledge (high-
lighted in orange) that the Kansas native is not 111 years old,
we can derive (highlighted in blue) that Roxanne is not 109
years old.

6 Demonstration
The working of our system is demonstrated on http://
bartbog.github.io/zebra. This webpage contains for some
puzzles:

• All the the clues, and which (minor) modifications to the
natural language formulation we implemented.



Figure 1: Screenshot of the visualization.

• The lexicon that is required to parse the puzzles (semi-
automatically generated).

• The resulting idp theory associated to each of the clues.

• Runnable IDP files to either solve the puzzle, or generate
the explanations.

• The visualization of the explanation by derivation steps.

The website is still under construction and will be updated
with more puzzles in the near future.

7 Conclusion
In this paper, we presented ZEBRATUTOR, a tool focused
on explaining the solution process of logic grid puzzles. For
the explanation part, we developed a method that prioritizes
derivation steps according to the mental effort required to
understand them. This tool has the potential to work end-to-
end, but preliminary experiments show that due to inaccura-
cies or ambiguities in the NLP parts, manual intervention in
the lexicon construction or clue formulation may be needed.

Future work includes combining the NLP interpretation
with the solving, so that different interpretations are tried if
the corresponding logic formulation does not yield a solu-
tion. Another interesting avenue is to expand the work on
explanations to other satisfaction problems, where the ab-
straction in terms of high-level clues may be less obvious.

References
Apt, K. R. 2003. Principles of Constraint Programming.
Cambridge University Press.

Blackburn, P., and Bos, J. 2005. Representation and infer-
ence for natural language.
Blackburn, P., and Bos, J. 2006. Working with discourse rep-
resentation theory. An Advanced Course in Computational
Semantics.
Claes, J. 2017. Automatic translation of logic grid puzzles
into a typed logic. Master’s thesis, KU Leuven, Leuven,
Belgium.
De Cat, B.; Bogaerts, B.; Devriendt, J.; and Denecker, M.
2013. Model expansion in the presence of function sym-
bols using constraint programming. In 2013 IEEE 25th In-
ternational Conference on Tools with Artificial Intelligence,
Herndon, VA, USA, November 4-6, 2013, 1068–1075. IEEE
Computer Society.
De Cat, B.; Bogaerts, B.; Bruynooghe, M.; Janssens, G.; and
Denecker, M. 2016. Predicate logic as a modelling lan-
guage: The IDP system. CoRR abs/1401.6312v2.
Denecker, M., and Vennekens, J. 2008. Building a knowl-
edge base system for an integration of logic programming
and classical logic. In Garcı́a de la Banda, M., and Pontelli,
E., eds., ICLP, volume 5366 of LNCS, 71–76. Springer.
Kamp, H. 1988. Discourse representation theory: What
it is and where it ought to go. In Blaser, A., ed., Natural
Language at the Computer, Scientific Symposium on Syn-
tax and Semantics for Text Processing and Man-Machine-
Communication, Heidelberg, FRG, February 25, 1988, Pro-
ceedings, volume 320 of Lecture Notes in Computer Sci-
ence, 84–111. Springer.
Lynce, I., and Silva, J. P. M. 2004. On computing mini-
mum unsatisfiable cores. In SAT 2004 - The Seventh Inter-
national Conference on Theory and Applications of Satis-
fiability Testing, 10-13 May 2004, Vancouver, BC, Canada,
Online Proceedings.
Manning, C. D.; Manning, C. D.; and Schütze, H. 1999.
Foundations of statistical natural language processing. MIT
press.
Marcus, M. P.; Santorini, B.; and Marcinkiewicz, M. A.
1993. Building a large annotated corpus of english: The
penn treebank. Computational Linguistics 19(2):313–330.
Marques-Silva, J. P., and Sakallah, K. A. 1999. GRASP: A
search algorithm for propositional satisfiability. IEEE Trans-
actions on Computers 48(5):506–521.
Marques Silva, J. P.; Lynce, I.; and Malik, S. 2009. Conflict-
driven clause learning SAT solvers. In Biere, A.; Heule, M.;
van Maaren, H.; and Walsh, T., eds., Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press. 131–153.
Mukherjee, A., and Garain, U. 2008. A review of methods
for automatic understanding of natural language mathemat-
ical problems. Artificial Intelligence Review 29(2):93–122.
Ryder, S. 2016. Puzzle Baron’s logic puzzles. Indianapolis,
Indiana: Alpha Books.
Sqalli, M. H., and Freuder, E. C. 1996. Inference-based
constraint satisfaction supports explanation. In AAAI/IAAI,
Vol. 1, 318–325.



Stuckey, P. J. 2010. Lazy clause generation: Combining
the power of SAT and CP (and mip?) solving. In Lodi,
A.; Milano, M.; and Toth, P., eds., Integration of AI and
OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems, 7th International Conference,
CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Proceed-
ings, volume 6140 of Lecture Notes in Computer Science,
5–9. Springer.


