Commentary on " CoverSize: a global constraint for
frequency-based itemset mining”

Pierre Schaus, John O.R. Aoga, Tias Guns
October 8, 2019

This paper is a prime example of a ’best of both worlds’ approach.

T.G. had been doing research on pattern mining with constraint programming during
his PhD. Pattern mining, more specifically itemset mining, is concerned with extracting
the set of all frequently occurring elements (item-sets) from a large collection of sets.

After the PhD, he was investigating whether pattern mining could also be of benefit
to constraint programming, e.g. whether the patterns extracted could help in formulating
or solving CP problems. One area that looked promising was table constraints, as the
data representation of itemset mining was very similar to the Boolean attribute-value
representation of a table.

While discussing these ideas informally, P.S. pointed out that they were already working
on a brand new table constraint propagator, that operated directly on the Boolean matrix
representation of the table constraints, and used bitvector operations inside. This was
the Compact Table’ propagator, for which they subsequently solved that it dominated
all previous propagators in nearly all situations. It quickly became clear that this new
propagator was in fact very similar to how some specialized itemset mining algorithms
implemented the computation of the cover relation. However, Compact Table had an
additional novelty that could also be of benefit to itemset mining algorithms: the backtrack-
friendly reversible sparse bitset datastructure.

With this, we could build a global constraint that performed the cover computation
as specialized algorithms do, as Lazaar et al had done recently, but more efficiently. The
advantage of putting it in one big constraint is that there is no need to instantiate one
Boolean variable per transaction in the solver. These decision variables are functionally
defined by the items. Hence when there are no additional constraints on these transaction
variables, it is more beneficial to hide them in the global constraint so that the solver does
not need to manage them. As there can be thousands to millions of constraints, not having
to manage thousands to millions of decision variables would allow scaling to bigger data.

Generality vs. efficiency However, the prime motivation for using constraint program-
ming for itemset mining, rather than specialized algorithms, is the ability to add arbitrary
constraints to the problem formulation. We hence wanted to find a more general solution



that still did not require exposing the thousands of transaction variables to the solver.
When reviewing the typical constraints expressed on the transaction variables, we realized
they basically fall into one of two constraints: 1) constraints on the sum of the transaction
variables, that is, the frequency of the itemsets, and 2) closedness constraints that can be
expressed as a relation between item and transaction variables.

With respect to 1) constraints on the sum of transaction variables, we came to the
conclusion that all that was really needed was the value of the frequency. Hence, we could
expose an integer variable whose upper and lower-bound was made consistent with the
minimal and maximal frequency obtainable by the itemset during search. We called it
CoverSize. However, propagating from a new upper bound on this variable to the item
variables was non-trivial. In fact, our theoretical analysis showed that it is NP-hard to
check consistency in general for such a propagator. Still, we found a number of conditions
that could be propagated efficiently and these showed to be sufficient in practice.

For the second case, 2) closedness constraints between items and transactions we could
not devise a way to export only part of the information. Closedness really requires reasoning
both over the set of transactions and items in the data. We hence created a CoverClosure
constraint that would be similar to CoverSize in terms of internal data structure, but that
would propagate the closedness relation only. It could hence optionally be combined with
CoverSize, or even only on part of the data as is often done when working with a positive
and a negative set of transactions for discriminative itemset mining.

Our experiments showed that this approach significantly outperformed other CP-based
pattern mining algorithms, and that it was on par with a specialized CP-like algorithm.
We also openly showed that even this significant improvement in efficiency for CP-based
methods did not allow it to compete with the highly optimized and specialized LCM
algorithm. However, it was more generic in that it allowed for any constraints on items
and frequency, including disciminative itemset mining settings. Hence, it combined the
generality of CP-based itemset mining with the effectiveness of specialized algorithms and
the efficiency of backtracking aware data-structures.

Past, present, future Looking back, these CoverSize and CoverClosure constraints
could in fact be plugged into almost all of the prior work of T.G. on CP-based pattern
mining, and would greatly benefit the scalability of the approaches when doing so.

Looking forward, it remains a clear and well-defined building block for CP-based item-
set mining, and for example also used in this year’s IJCAI19 paper on ”Constraint Pro-
gramming for Mining Borders of Frequent Itemsets” by Mohamed-Bachir Belaid, Christian
Bessiere and Nadjib Lazaar and the CP19 paper on ” Learning optimal decision trees using
constraint programming” by Hélene Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-
Guy Quimper and Pierre Schaus.



