

Learning Scheduling Models from Event Data

Appeared in ICAPS 2019

Arik Senderovich, Kyle E.C. Booth, J. Christopher Beck

jcb@mie.utoronto.ca

Motivation: Schedule-Driven Systems

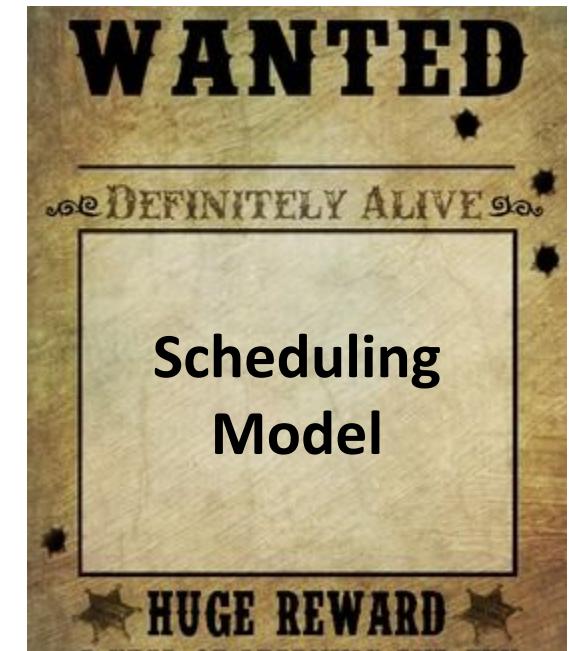
Timetables

Production plans

Appointment books

Modeling Schedule-Driven Systems

- OR analyst models the system manually
 - Interviews & time studies
 - Ad-hoc modeling decisions
- Issues with manual modeling
 - Time consuming
 - Inaccurate measurements
 - Modeling expertise matters

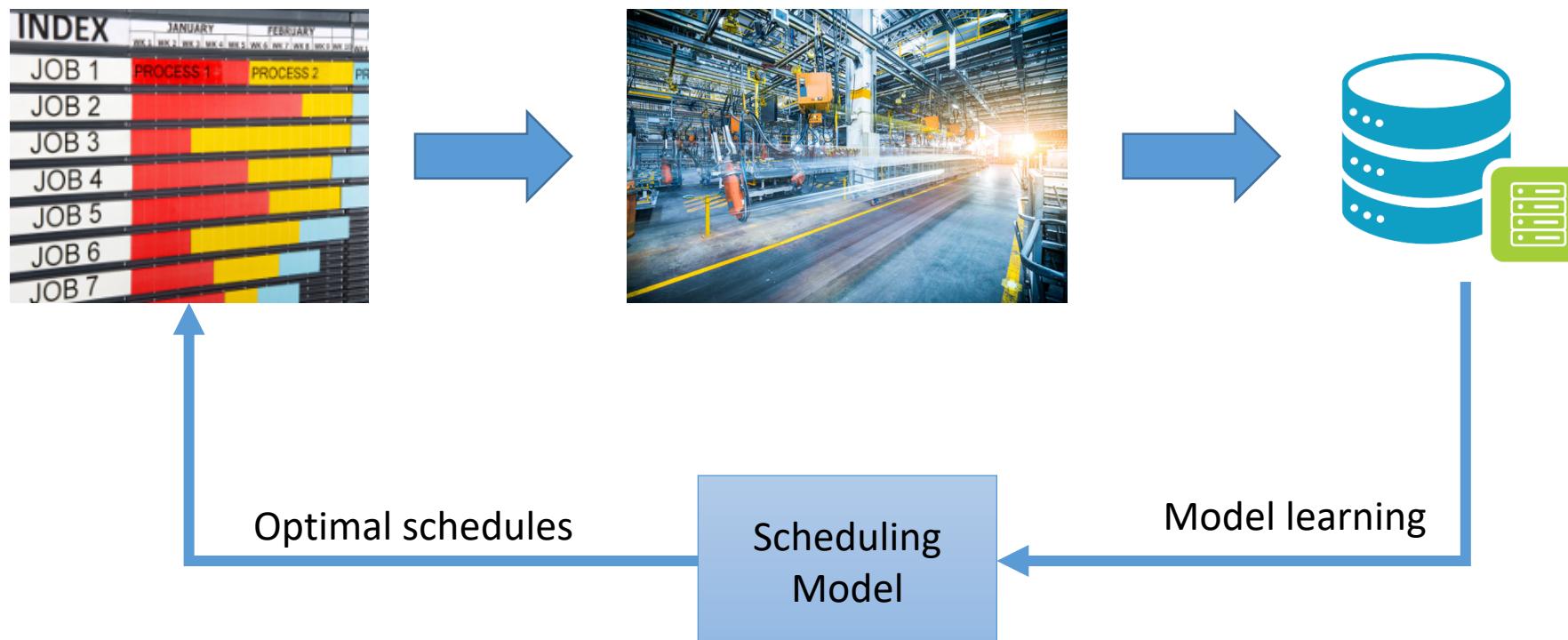


Can we automatically create a scheduling model?

Model Learning from Event Data

Assumptions

1. System is already running
2. Event data contains only feasible solutions



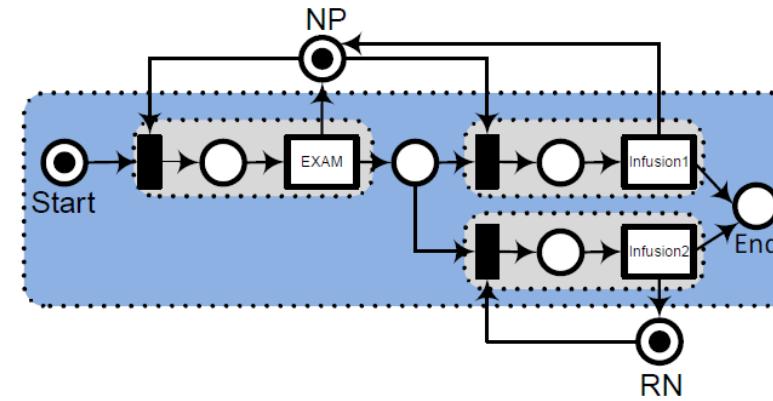
What is event data?

- Recordings of schedule executions:

Case	Activity Type	Resources	Start	Complete
pat1	Blood-Draw	RN	9:05AM	9:10AM
pat1	Exam	MD	9:55AM	10:20AM
pat2	Exam	NP	9:30AM	9:45AM
pat2	Infusion	RN	9:35AM	10:52AM
pat3	Exam	NP	12:45PM	1:10PM
pat3	Infusion	NP	9:35AM	10:32AM

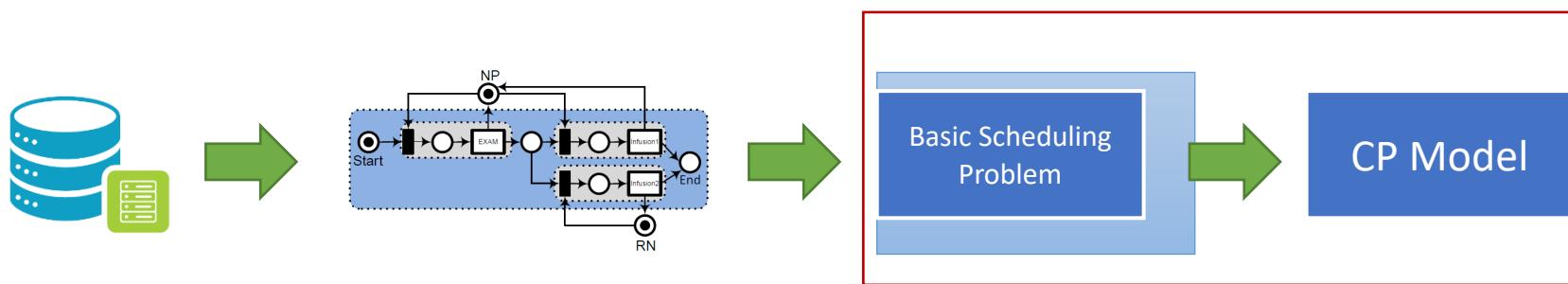
Process Mining

Case	Activity Type	Resources	Start	Complete
pat1	Blood-Draw	RN	9:05AM	9:10AM
pat1	Exam	MD	9:55AM	10:20AM
pat2	Exam	NP	9:30AM	9:45AM
pat2	Infusion	RN	9:35AM	10:52AM
pat3	Exam	NP	12:45PM	1:10PM
pat3	Infusion	NP	9:35AM	10:32AM



- Mining process models from event data (typically to Petri nets)
- Models are used for descriptive and predictive analysis
- In this work: process mining meets scheduling

Our Approach: Model Learning using Process Mining

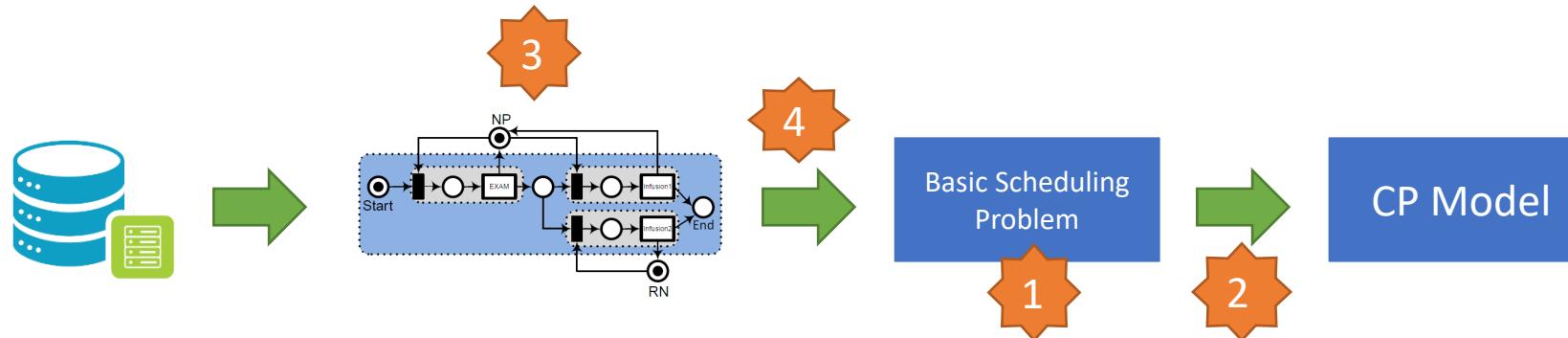


Separating problem description (BSP)
from the constraint programming
(CP) model that solves it

Outline

- Introduction
- Details of the Contribution
- Proof of Concept Experiments
- Future Work

Contributions



1. BSP = declarative problem representation
2. Mapping BSP into CP model
3. Defining a new type of Petri net - ARPNs
4. Mapping ARPNs to BSPs
5. End-to-end data to model solution

Basic Scheduling Problems (BSPs)

Basic Scheduling
Problem

1

- Defines a family of scheduling problems

Definition (Basic Scheduling Problem (BSP))

Given a set of activities to be scheduled, a function $\theta : \mathcal{A} \rightarrow \mathcal{T}$ that maps these activities to activity types and a function $v : \mathcal{A} \rightarrow \mathcal{V}$ that maps activities to jobs, and a set of resources \mathcal{R} , the BSP is a tuple $\langle \mathcal{A}, \theta, v, \mathcal{T}, \mathcal{R}, \mathcal{V}, \Pi, c, d \rangle$ with:

- \mathcal{T} being the set of activity types,
- \mathcal{R} being the set of resources,
- \mathcal{V} being the set of jobs,
- $\Pi = \{\Pi_v \subseteq \mathcal{T} \times \mathcal{T} \mid v \in \mathcal{V}\}$ being a set of finite sequences over \mathcal{T} ,
- Π_v being the set of precedence relations between pairs of activity types, such that for all $(t, t') \in \Pi_v$, a job v can only start after t has been completed and before t' can start in job v ,
- $c : \mathcal{R} \rightarrow \mathbb{N}^+$ being the capacity of each resource to their capacities, and,
- $d : \mathcal{T} \times \mathcal{R} \rightarrow \mathbb{R}^+$ being a resource availability function that maps pairs of activity types and resources (that can execute these activities) to their availability values in the time domain.

TL;DR

- Generalizes well-studied scheduling problems: single-machine, parallel machine and job-shop

Basic Scheduling Problem (BSP)

- A BSP comprises two parts
 1. Instance-based (given for an instance)
 - Set of jobs containing activities
 - Mapping of jobs and activities to respective types

pat1: A1 (Blood-Draw) A2 (Exam)

pat2: A3 (Exam) A4 (Infusion)

Job types:
Consulting patient
On-treatment patient

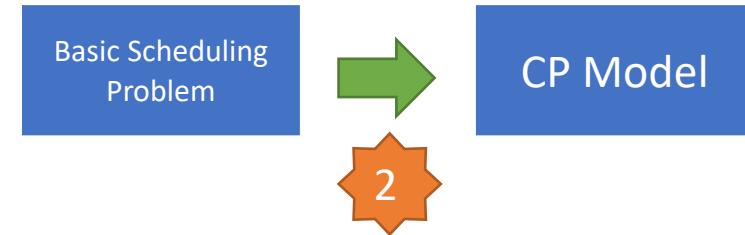
Basic Scheduling Problems (BSPs)

Basic Scheduling
Problem

1

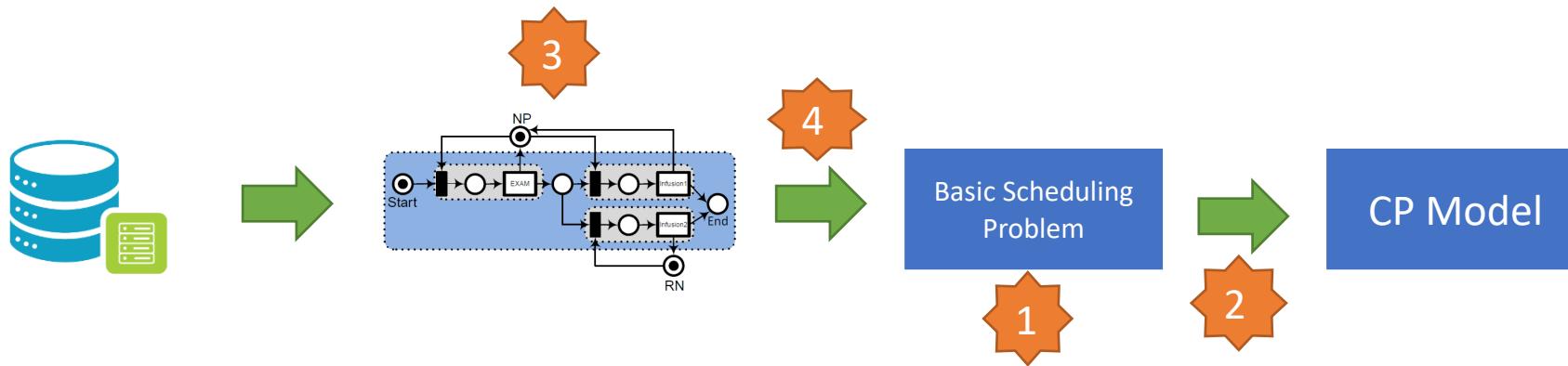
- A BSP comprises two parts
- 2. Parameterized (learned)
 - Precedence constraints between activity types per job type
 - Resources and their capacities: medical doctor (4), nurse (3)
 - Durations for resource & activity type combinations: exam by NP (15 min), exam by MD (25 min)

Mapping BSP to CP Model



- BSP components are mapped to CP variables and constraints
 - Activities – mandatory interval variables
 - Precedence – *EndBeforeStart* constraints per job type
 - Resource assignment – optional interval variables with resource dependent durations
 - Resource capacity – *Cumulative* global constraint per resource
- Standardized CP model (no guarantees on quality of model)
- Objective function – not part of the BSP (future work)

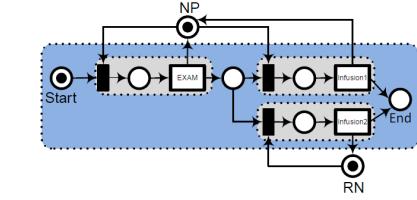
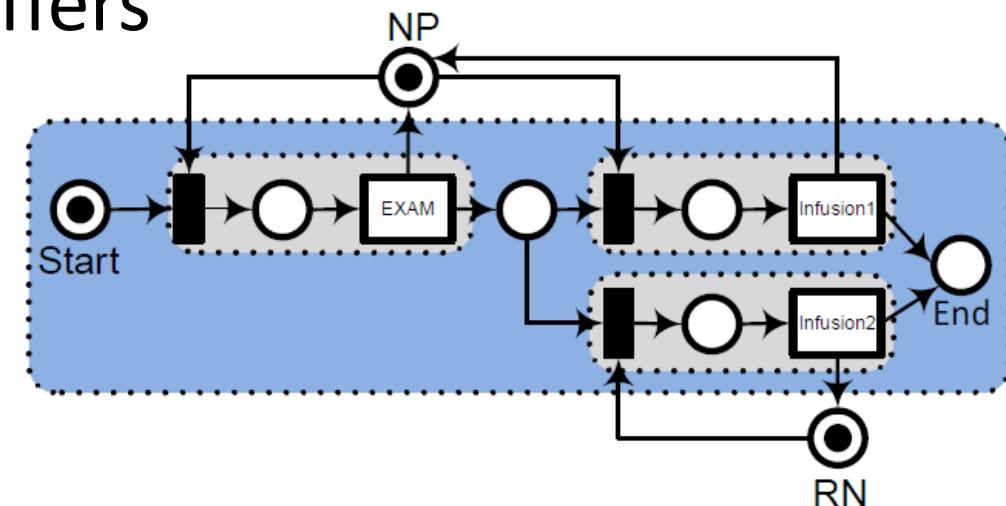
So far...



Timed Petri net (TPN)

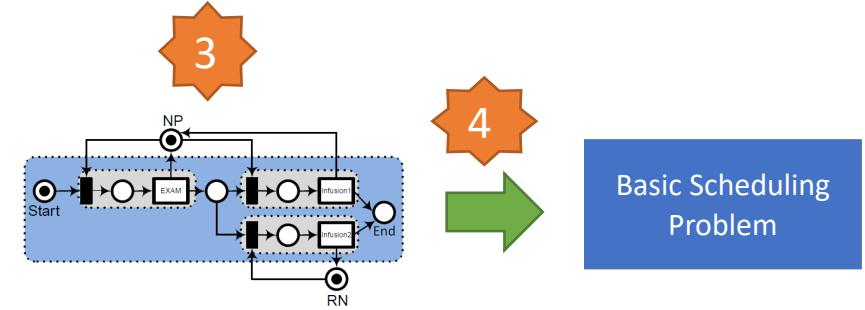
3

- Well-established formalism to model discrete-event dynamic systems
- Rectangles = transitions
 - Labeled transitions – activity types with specified durations
 - Silent transitions – routing (resource assignment)
- Circles = places; activity/resource buffers
- Edges = preconditions/effects
- Tokens = system state



Silva (2013). *Half a century after Carl Adam Petri's Ph.D. thesis: A perspective on the field.*

Gap: Expressivity of TPNs

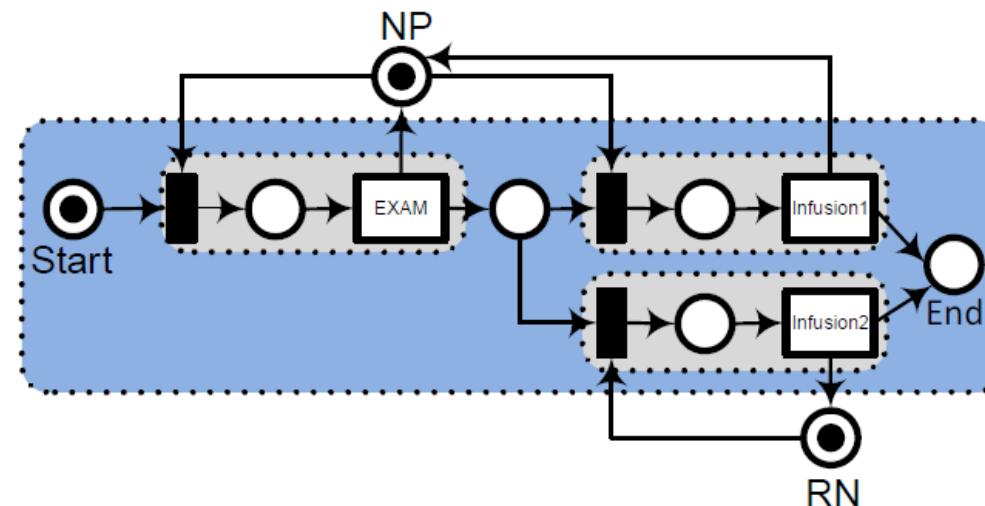


- TPNs are more expressive than BSPs
 - Shared resources per activity
 - Non-unary demand for resources
 -
- Mapping to BSP requires restricting the TPN

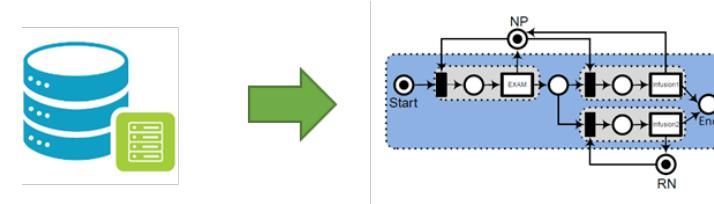
Activity-Resource Petri net (ARPN)

➤ Restricted TPNs

- ❑ Activity type constructs (**grey area**)
- ❑ Job type constructs (**blue area**) – contain only activity constructs
- ❑ Activity-Resource PN – resource buffers connected to activity types

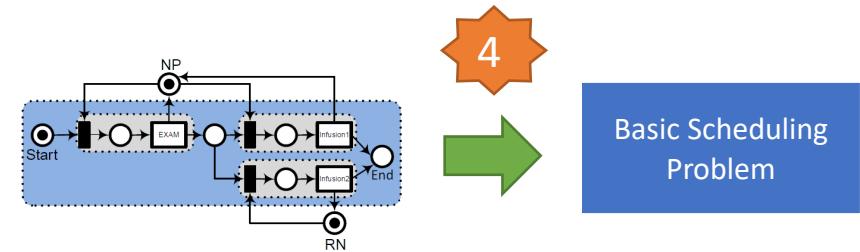


Mining TPNs from Event Data

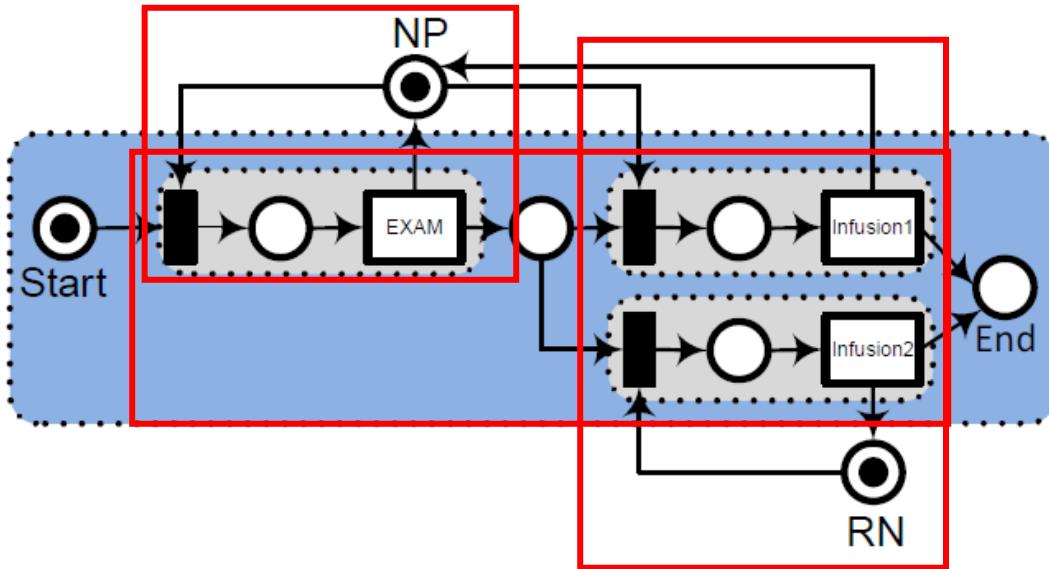
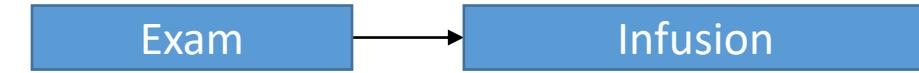


- Produce TPNs from event data by mining
 - Temporal dependencies (precedence, overlaps,...)
 - Duration distributions (we take mean values)
 - Resource capacities and activity assignments
- Must verify that TPN is ARPN (polynomial time in size of TPN)

Mapping ARPN to BSP



Example: On-treatment patient



- Exam by NP (fixed duration)
- Infusion by NP or RN
- Duration of Infusion is resource dependent

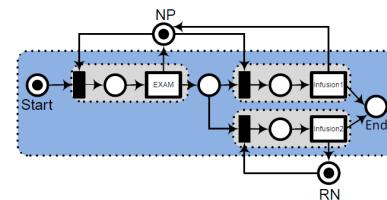
Technical details of the algorithm are in the paper

Outline

- Introduction
- Details of the Contribution
- Proof of Concept Experiments
- Future Work

Proof of Concept 1: Job-Shop Scheduling

Job-shop scheduling (JSP)
standard benchmarks



Comparison 1: BSP = JSP?

Basic Scheduling
Problem

Comparison 2: CP model good enough?

CP Model

CP Optimizer
10 min time limit

Proof of Concept 1: Results

➤ BSP learning

- ❑ Learned BSP is equivalent to the originating JSP
- ❑ Learning BSP takes less than 1 second (on average)

Comparison 1: BSP = JSP?

Basic Scheduling Problem

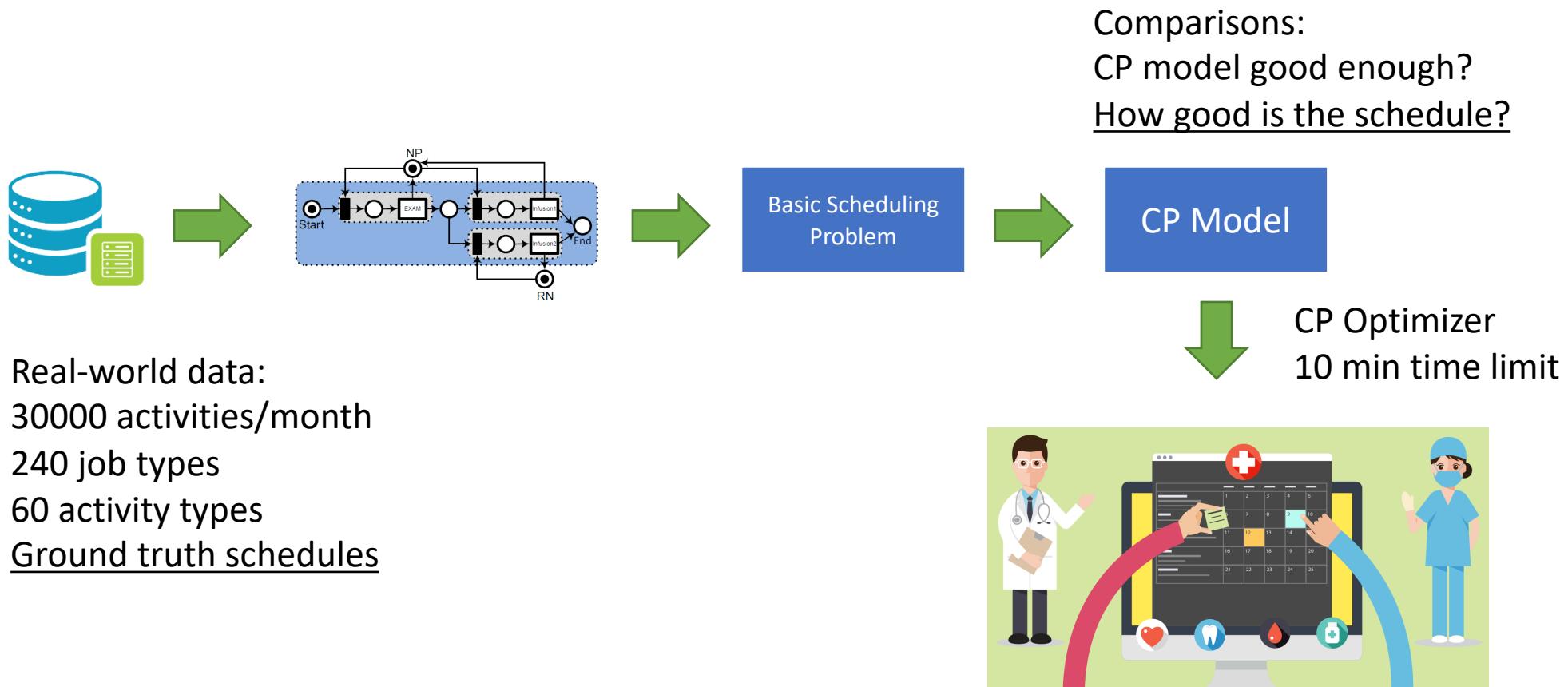
➤ CP Model

- ❑ CP solved 49/53 learned models to optimality in 15.4 seconds on average
- ❑ Found feasible solutions for the other 4 with an average optimality gap of 6.3% (10 min time limit)

Comparison 2: CP model good enough?

CP Model

Proof of Concept 2: Appointment Scheduling



Proof of Concept 2: Results

- BSP learning
 - 3 months training data (January – March 2016)
 - 1 month test data (April 2016, 21 days)
 - Learning BSP takes approx. 450 seconds

Proof of Concept 2: Results

➤ CP Model:

Min Makespan:

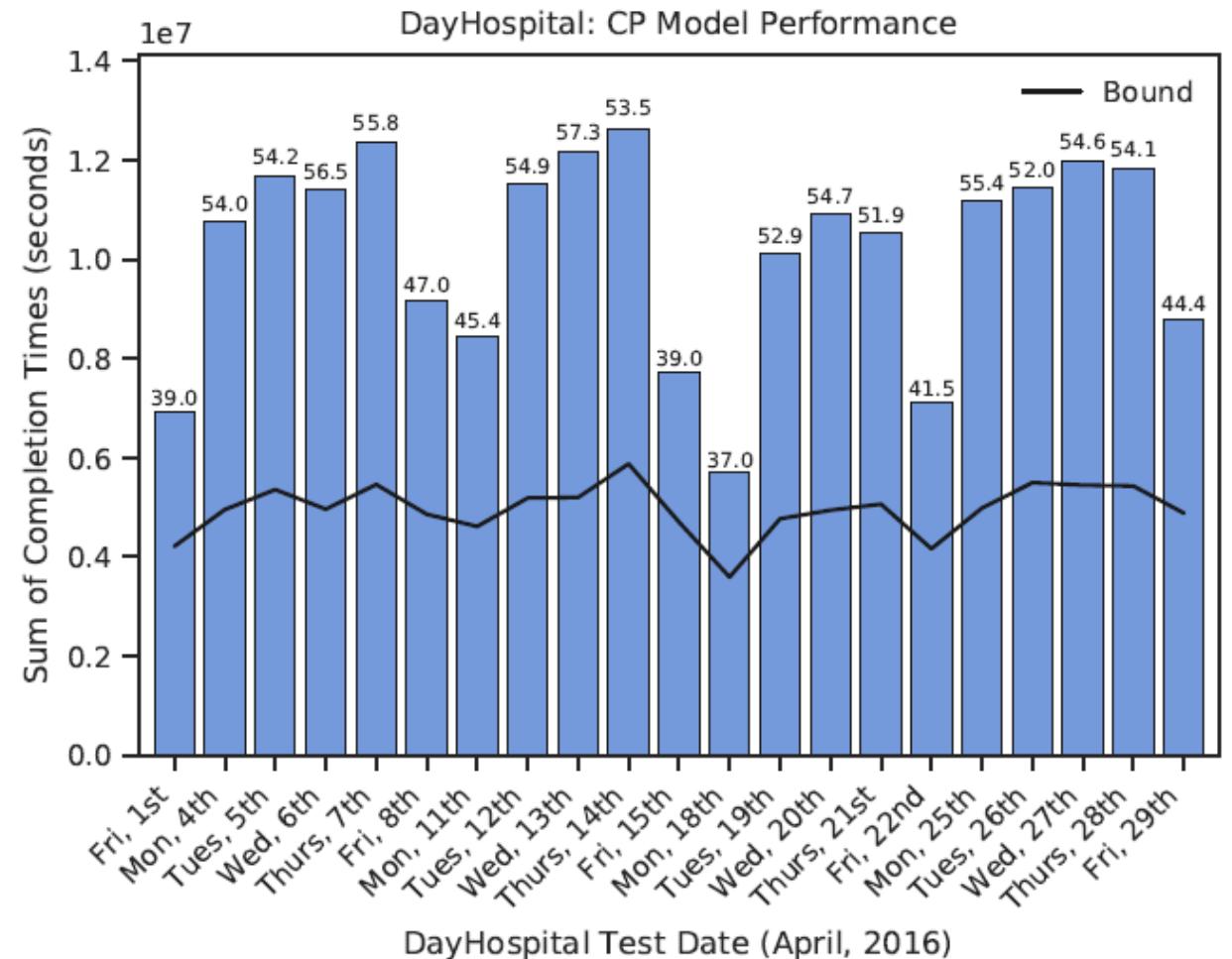
Solved to optimality

in less than 1 seconds for all test days.

Min sum of completion times:

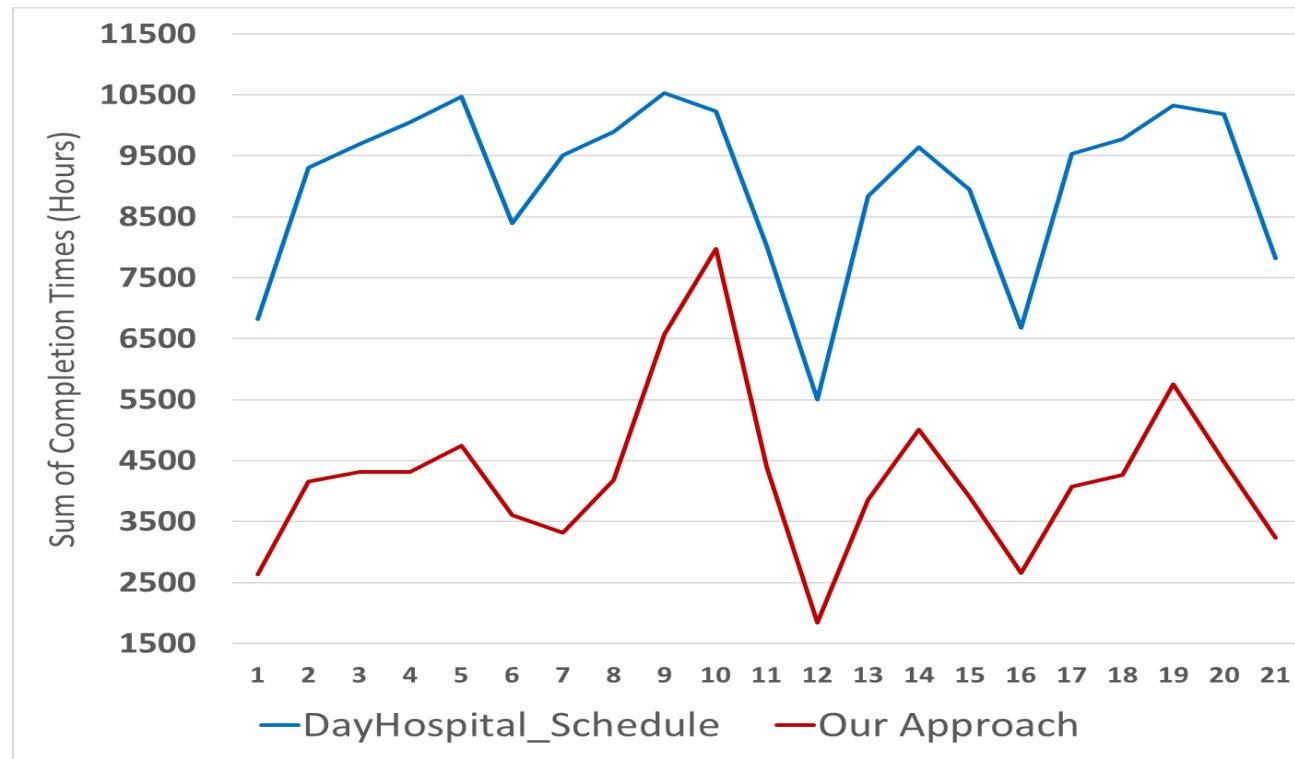
Optimality gap – 50.3% (avg)

Feasible solutions for all days



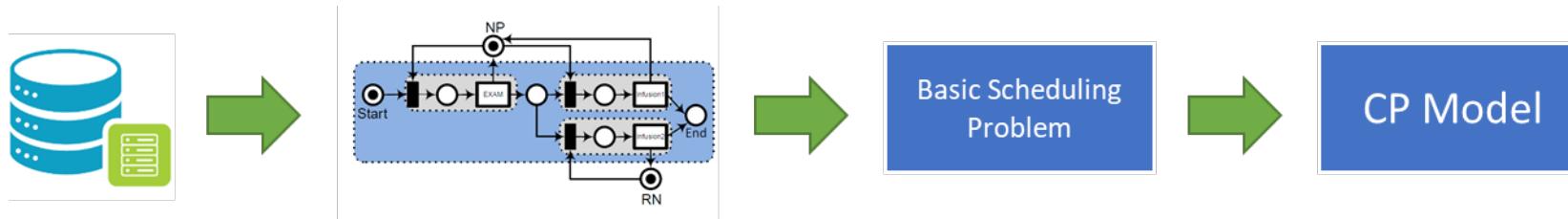
Schedule Comparison Experiment (Not in the paper)

- Comparing our schedules to real hospital schedules
- Execution comparison: real durations and punctuality (patients are early/late)



Future Work

- Learning scheduling models with objective functions
- Extending BSP to capture more complex scheduling problems (TPN expressivity)
- Mapping learned Petri nets to stochastic scheduling problems (via stochastic Petri nets)



Learning Scheduling Models from Event Data

Arik Senderovich, Kyle E. C. Booth, J. Christopher Beck

Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
sariks@mie.utoronto.ca, kbooth@mie.utoronto.ca, jcb@mie.utoronto.ca

Thank you!
sariks@mie.utoronto.ca