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Motivation: Schedule-Driven Systems

Timetables Production plans Appointment books

N



Modeling Schedule-Driven Systems

»OR analyst models the system manually
Q Interviews & time studies
aQ Ad-hoc modeling decisions

>Issues with manual modeling
ad Time consuming

| Scheduling
d Inaccurate measurements | Model

O Modeling expertise matters

Can we automatically create a scheduling model?



Model Learning from Event Data

Assumptions
1. System is already running

2. Event data contains only feasible solutions

Optimal schedules

Scheduling
Model

Model learning



What is event data”?

>Recordings of schedule executions:

Case Activity Type  Resources Start  Complete
patl  Blood-Draw RN 9:05AM 9:10AM
patl  Exam MD 9:55AM  10:20AM
pat2  Exam NP 9:30AM 9:45AM
pat2  Infusion RN 9:35AM  10:52AM
pat3  Exam NP 12:45PM 1:10PM

pat3  Infusion NP 9:35AM  10:32AM




Process Mining

Case  Activity Type  Resources Start  Complete
patl  Blood-Draw RN 9:05AM 9:10AM
patl  Exam MD 9:55AM  10:20AM
pat2  Exam NP 9:30AM 9:45AM
pat2  Infusion RN 0:35AM  10:52AM
pat3  Exam NP 12:45PM 1:10PM
pat3  Infusion NP 9:35AM  10:32AM

oooooooooooooooooo
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> Mining process models from event data (typically to Petri nets)

> Models are used for descriptive and predictive analysis

>

In this work: process mining meets scheduling

van der Aalst (2011). Process mining: discovery, conformance and enhancement of business processes.



Our Approacn:
Model Learning using Process Mining

ad

Separating problem description (BSP)
from the constraint programming
(CP) model that solves it
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Details of the Contribution
Proof of Concept Experiments
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Future Work



Contributions

Basic Scheduling
Cochect » CP Model
Ty O

BSP = declarative problem representation

Mapping BSP into CP model

Defining a new type of Petri net - ARPNs
Mapping ARPNs to BSPs

End-to-end data to model solution

A S



Basic Scheduling Problems (BSPs)

> Defines a family of scheduling problems

Definition (Basic Scheduling Problem (BSP))

Given a set of activities to be schedulg
function v : &/ — ¥ that maps a

@ 7 being the set gf

@ % being the s
@ ¥ being the set s a set of finite sequences over 7,
Q 1= {I1, C 7 x
for all (t,t') € IT,,, ore t' can start in job v,
Q@ c.#->NT being the firces to their capacities, and,
Q@ d: 7 x%-»Rt being & al function that maps pairs of activity types and resources (that

can execute these activiti¥ yes in the time domain.

ion 0 : o/ — 7 that maps these activities to activity types and a
, the BSP is a tuple (o7,0,v,7 %,V Il c,d) with:

ence relations between pairs of activity types, such that

> Generalizes well-studied scheduling problems:
single-machine, parallel machine and job-shop

Basic Scheduling
Problem
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Basic Scheduling Problem (BSP)

> A BSP comprises two parts

1. Instance-based (given for an instance)

O Set of jobs containing activities
O Mapping of jobs and activities to respective types

patl: Al (Blood-Draw) A2 (Exam)
pat2: A3 (Exam) A4 (Infusion)

Job Consulting patient
types:
On-treatment patient

Basic Scheduling
Problem
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Basic Scheduling

Basic Scheduling Problems (BSPs)

> A BSP comprises two parts
2. Parameterized (learned)

Q Precedence constraints between activity types per job type
Q Resources and their capacities: medical doctor (4), nurse (3)

QA Durations for resource & activity type combinations: exam by NP
(15 min), exam by MD (25 min)

Blood-Draw Exam
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Mapping BSP to CP Model ?}
> BSP components are mapped to CP variables and constraints

Q Activities — mandatory interval variables
Q Precedence — EndBeforeStart constraints per job type

O Resource assignment — optional interval variables with resource dependent
durations

Q Resource capacity — Cumulative global constraint per resource

> Standardized CP model (no guarantees on quality of model)
> Objective function — not part of the BSP (future work)
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So far...

CP Model
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Timed Petri net (TPN)

> Well-established formalism to model discrete-
event dynamic systems

> Rectangles = transitions

A Labeled transitions — activity types with specified durations

A Silent transitions — routing (resource assignment)
> Circles = places; activity/resource buffers NP
> Edges = preconditions/effects

> Tokens = system state

Silva (2013). Half a century after Carl Adam Petri’s Ph.D.
thesis: A perspective on the field.




Gap: Expressivity of TPNs

Basic Scheduling
Problem

> TPNs are more expressive than BSPs
3 Shared resources per activity

A Non-unary demand for resources
d ...

> Mapping to BSP requires restricting the TPN
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Activity-Resource Petri net (ARPN)

> Restricted TPNs
Q Activity type constructs (grey area)

A Job type constructs (blue area) — contain only activity constructs

Q Activity-Resource PN — resource buffers connected to activity types

18




Mining TPNs from Event Data =

> Produce TPNs from event data by mining

Q Temporal dependencies (precedence, overlaps,...)
O Duration distributions (we take mean values)
ad Resource capacities and activity assighnments

> Must verify that TPN is ARPN (polynomial time in size of TPN)

Senderovich et al. (2015). Data-Driven Performance Analysis of Scheduled Processes. 19



Mapping ARPN to BSP

Example: On-treatment patient

TN

(U

o
O]

Technical details of the algorithm are in the paper

Basic Scheduling
Problem

Exam Infusion

O Exam by NP (fixed duration)
O Infusion by NP or RN

O Duration of Infusion is resource dependent

20
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Proof of Concept 1: Job-Shop Scheduling

Job-shop scheduling (JSP)
standard benchmarks Comparison 1: BSP = JSP?

Comparison 2: CP model good enough?

Basic Scheduling

CP Optimizer
10 min time limit

4
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Proof of Concept 1: Results

Comparison 1: BSP = JSP?

> BSP learning
ad Learned BSP is equivalent to the originating JSP

Q Learning BSP takes less than 1 second (on average)

> CP Model Comparison 2: CP model good enough?

d CP solved 49/53 learned models to optimality in 15.4
seconds on average

Q Found feasible solutions for the other 4 with an average
optimality gap of 6.3% (10 min time limit)

23



Proof of Concept 2: Appointment Scheduling

Comparisons:
CP model good enough?
How good is the schedule?

Basic Scheduling

—=

‘ CP Optimizer
Real-world data: 10 min time limit
30000 activities/month

240 job types

60 activity types
Ground truth schedules
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Proof of Concept 2: Results

> BSP learning
Q 3 months training data (January — March 2016)
Q 1 month test data (April 2016, 21 days)
A Learning BSP takes approx. 450 seconds
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Proof of Concept 2: Results

> CP Model:

Min Makespan:
Solved to optimality

in less than 1 seconds for all test days.

Min sum of completion times:
Optimality gap — 50.3% (avg)

Feasible solutions for all days

le7

DayHospital: CP Model Performance
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Schedule Comparison Experiment
(Not in the paper)

» Comparing our schedules to real hospital schedules

> Execution comparison: real durations and punctuality (patients are early/late)
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—DayHospital Schedule —Our Approach



Future Work

> Learning scheduling models with objective functions

> Extending BSP to capture more complex scheduling problems
(TPN expressivity)

> Mapping learned Petri nets to stochastic scheduling problems
(via stochastic Petri nets)



Basic Scheduling
Problem
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CP Model
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