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“CP is well-positioned to pursue the Holy Grail of CS:
the user simply and the computer solves it”

This is true!
But what problems can we state?



An Example: Traffic Light Placement

= Add/remove traffic lights in a city
= |nstallation costs and budget limit

= Objective: improve traffic flow %
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“Stating the problem”: That’s a Problem
Let’s try to model that:
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The traffic light impact cannot be modeled by an expert
but we can extract a model from data!
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One More Example: Thermal Aware Job Allocation

= Many-core CPU (Intel SCC, 2009, 48 cores

= AssIgn Jobs to cores

» | oad balancing constraints

* Objective: avoid thermal hot-spots (efficiency 10SS
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One More Example: Trans-Precision Computing

" [weaking precision levels in computations
» (Stochastic) maximal error guarantees
= Objective: minimize energy consumption
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What problems can we state?



“Give me a
and a ,
and | shall the world”

(Plagiarized Archimedes)

And In theory we have both!
So, what is missing?



Empirical (Decision) Model Learning

= \We have universal solvers (CP, SMT, MINLP...)
= \We have universal approximators (Neural Nets, DT Ensembles...)

We just need a way to

Empirical Model Learning in a nutshell

Core
combinatorial
structure

1) Learn =P ML model 2) Define =P
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Empirical (Decision) Model Learning

= \We have universal solvers (CP, SMT, MINLP...)
= \We have universal approximators (Neural Nets, DT Ensembles...)

We just need a way to

Empirical Model Learning in a nutshell

Core
combinatorial
structure

ML model
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How do we “embed” a ML model
into a combinatorial model?

Here come examples on Neural Networks...



Neural Networks & MI(N)LP
How shall we embed an NN in MI(N)LP?

- monotone e.g.
= non-decreasing RelU
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Neural Networks & MI(N)LP
How shall we embed an NN in MI(N)LP?

4 N\ 2
> f —
N /
y=wlx+b
For RelLUs:
z = max(0, y)

c=wlx+b—s with: 2,5 >0
t=1—s<0
t = O — Z S O ;“\\(\ ALMA MATER STUDIORUM
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Neural Networks & CP
What about CP?

In CP: a global constraint
for each neuron!

Since f is monotone:
" ub(y) changes+* ub(z) changes
= |b(y) changes+~ Ib(z) changes
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Neural Networks & CP

An improvement: 2-layers at once via a Lagrangian relaxation

ine f z=b+f(y)
| y=Wx+0b
1N1 out

1Ny f

This Is separable!

| x-part (linear)
y-part (again separable)
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Does it work?



Expert-made Model vs EML

True (simulated) core efficiencies, after 60s optimization

Inst. #0 Inst. #1 Inst. #2 Inst. #3 Inst. #4 Inst. #0 Inst. #1 Inst. #2 Inst. #3

Linear Model

Inst. #4

o
Inst. #19




Multiple Embedding Methods

Multiple encodings for Decision Trees in CP

#Solved inst. over time, feat1l8u
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Different embedding methods
) have different properties




Embedding Methods & Solution Techniques

Best option for Decision Trees e  Vceswues)
» GAC-capable encodings for CP _” ommsatruiess |
| | | | 501 ——- MSAT(ITE) :
= Simple implications for SMT i
Z3(WRules) :
40 Z3(Rules) :
N Z30PT(WRules) !
% Z30PT(Decl) !
£ —-= CP(CTuples) _
] _ ;30- — CP(Decl)
The solution technique £ |
matters (a lot)! o i
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Instances Solved



This Is only the beginning



How can We Use EML?

Some potential applications

Optimize over hard-to-model systems:
" E£.9. Job-to-core assignments, traffic lights, equipment set-points

Use EML to and do .
» E£.g. high-level budget assignment, then low-level budget assignment

Deal with uncertainty:
" E.g. Learn probabillity distributions
" .g. a chance constraint as a classifier

ML specific tasks:
= E.g. Verification, counter-examples
" E.9. Explanation
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In theory we can optimize the world, but...

“In theory there is no difference
between theory and practice.
In practice, there Is”
(A wise person)



Size Does Matter

We have a scalability problem:

Large ML models are expensive to process
" Neural Networks with tens of layers
= Decision Iree ensembles with 100s of trees

Weaker reasoning
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Size Does Matter

Consider a MILP encoding for Neural Networks

1

Ao > .

g(l) Yo

' -
True RelLU Zo LP Relaxation

» POor bounds = poor relaxation
» (5G00d bounds = expensive pre-processing
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Size Does Matter

Some experimental data:

Relative ub

Relative UB over depth

103 -

-

-
N
]

P(a)

(1)

P(s)

Num. hidden layers

Bound tightening helps
(but just a bit...)
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Size Does Matter

We have a scalability problem:

Large ML models are expensive to process
" Neural Networks with tens of layers
= Decision Iree ensembles with 100s of trees

Weaker reasoning
" .g. bound degradation
= Overly complex conflicts/explanations

Increasing dataset size
= E.g. many inputs = many examples to learn something useful

There are the usual solutions,

but also something more interesting T VT Y —
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Subtle Implications of Approximate Models

With most real world problems, this is our situation:

System

data

What kind of data”

= Simple parameters (e.g. costs, travel times)
= Observed values & predictions (e.g. weather & tourists)
» Decidable values & outputs (e.q. traffic lights & traffic)
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Subtle Implications of Approximate Models

With most real world problems, this is our situation:

System

data

Approximation leads to a couple of problems
" Estimation errors may the solver!

* The solver may find the of the ML model!

Conventional models are not immune! FRIER) atma MATER STUDIORUM
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Subtle Implications of Approximate Models

With most real world problems, this is our situation:

System

data

We often strive to get accurate models Solution

But we actually care

about ! -
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Subtle Implications of Approximate Models

An example from the literature (Smart “Predict, then Optimize”)
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"All models are wrong,
but some are useful.”

(George Box)



All Models Are Wrong, but Some are Useful

This is what we usually do:

System

-_ -0 -0 - 00-00
O0O0—000000—00

Solution
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All Models Are Wrong, but Some are Useful

...But can we search for the right sort of wrong model?

System
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Solution
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All Models Are Wrong, but Some are Useful

...But can we search for ?

System

data

This “wrong" model
= Only cares about the results
= Only care about the feasible region

Solution

It COUId be and yleld ! ﬁ‘?\\ ALMA MATER STUDIORUM
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There Are Related Approaches

A bunch of them, In fact:

= Black-box optimization (with surrogate models)
= System identification

» | ocal search/GAs + actual simulation

* Machine Learning model verification

= Smart “Predict, then Optimize”...

We made a survey (to be updated soon)!
http://emlopt.github.io

" A reference web site for all EML-related stuft
" Survey, a (crude) library
= And a decent tutorial with on “epidemic control” :-) L) ONIVERSITA D1 BOLOGNA
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http://emlopt.github.io




f you like these topics...
...DO your best to attend these invited talks!

Integrating Machine Learning
and Discrete Optimization

Bistra Dilkina
Thursaay, Otc 3

Verification and Explanation
of Deep Neural Networks

Nina Narodytska
Friday, Otc 4
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That's alll

Got questions®
(I certainly do)

http://emlopt.aithub.io

www.unibo.it


http://emlopt.github.io

