
Constraint Acquisition Via Classification

S. D. Prestwich, E. C. Freuder, B. O’Sullivan, D. Browne

Insight Centre for Data Analytics

School of Computer Science & Information Technology

University College Cork, Ireland

{steven.prestwich,eugene.freuder,david.browne,
barry.osullivan}@insight-centre.org

Abstract. In constraint-based reasoning, the effort to bridge the gap between the

current state-of-the-art and human-level Artificial Intelligence has been embod-

ied in a long-standing challenge to address the “Holy Grail” of computer science:

the user simply states a problem and the computer proceeds to solve it, without

further programming. This in turn presents the challenge of automating the ac-

quisition of a model of the problem in a form suitable for solving. Constraint

acquisition methods can be used to acquire a model from examples of solutions

and failures. However, in general they do not handle mixed data types, or very

large, small or imbalanced datasets; they are susceptible to overfitting; and they

are not designed to generate compact models. A two-step process — training a

classifier to discriminate between solutions and failures, then transforming the

trained classifier to a constraint model — can tackle these issues and opens up

new application areas.

1 Introduction

A constraint satisfaction problem (CSP) involves a set of problem variables and sets of

values that can be assigned to each variable. An instantiation of the variables assigns

a value to every variable. Some of these instantiations will be solutions to the problem

and some will be failures. A correct model of the problem specifies a set of restrictions

(constraints) on which combinations of values are permitted, such that all and only

the instantiations that satisfy all the constraints are solutions. In this paper the term

constraint satisfaction is used very broadly, and the derived models might be formulated

as constraint networks, SAT formulas or mathematical programs.

In constraint-based reasoning the effort to bridge the gap between the current state

of the art and human-level Artificial Intelligence (AI) has been embodied in a long-

standing challenge to address the “Holy Grail” of computer science: the user simply

states a problem and the computer proceeds to solve it, without further programming

[11]. The premise has been that Constraint Programming (CP) is well-suited to address

this challenge, as once a problem is expressed as a constraint satisfaction (or optimiza-

tion) problem there are general purpose algorithms that can, in principle, proceed to

solve it. Furthermore, as such problems are ubiquitous within AI and have many prac-

tical applications [10], progress in this direction will have broad implications.

The field of Constraint Acquisition (CA) addresses the initial challenge of automat-

ing the expression of the problem as a constraint satisfaction problem. In CA we are



given examples of solutions and failures (positive and negative examples respectively)

and the aim is to learn a constraint model that represents them. Beside the general goal

of automated problem modelling, the model might be used as an explanation of the

problem, to classify partial assignments, to show that a partial assignment cannot be

placed in a class, to speed up the solution of future problems, or to find instances that

optimise some objective.

The CA problem is defined in [20] as follows. We are given: a space X of x in-

stances (assignments to variables V ); a space of possible constraints C; an unknown

target constraint theory T ⊆ C; and a set of training instances E, in which positive in-

stances satisfy T while negative instances do not. The task is to find a constraint theory

H ⊆ C such that all positive instances in E are satisfied, and none of the negative in-

stances. A more detailed formal definition and theoretical results are given in [3]. Active

methods are guided by interaction with a user, but we shall consider only passive CA

methods which learn automatically.

Several CA systems have been devised (see Section 3), based on machine learn-

ing, inductive logic programming and other methods, but current methods generally do

not address practical difficulties such as mixed data types, scalability, overfitting, small

or imbalanced datasets, and finding compact layered models. We propose a two-step

approach: (i) train a classifier to discriminate between solutions and failures; (ii) trans-

form the trained classifier to a constraint model. We call this approach classifier-based

constraint acquisition (CLASSACQ) and it greatly extends the CA toolkit, offering new

ways of tackling these issues.

The contributions of this paper are: we identify the connection between classifi-

cation and CA; we outline several new classifier-based constraint models; we indicate

which CA issues these might solve; and we discuss future directions for this fruitful line

of research. Section 2 maps several classifiers to constraint models, Section 3 discusses

related work, and Section 4 concludes the paper and discusses future work.

2 Classifiers and constraint acquisition

New connections between machine learning (ML) and optimisation are being estab-

lished with increasing frequency, and ideas related to CLASSACQ are already known.

A strand of work mentioned in a recent survey [17] is the representation of ML models

as optimisation problems. For example trained decision trees (DTs) and some artificial

neural networks (ANNs) can be compiled into optimisation models (see below and Sec-

tion 3). However, this work was not motivated by CA and is rarely referenced in the CA

literature.

In this section we show that CLASSACQ can address several practical issues that

have not been tackled in the CA literature, and that it opens up new application areas.

Except for the cases of DTs and ANNs we have not seen these constraint models defined

elsewhere, and none seem to have been used for CA.

2.1 Mixed data types

CA systems typically generate discrete constraint models. However, many classifiers

work on continuous variables, for example support vector machines (SVMs) and deep



learning classifiers. They can also be applied to categorical variables via one-hot en-

coding (also called binarisation or reification).

DTs and random forests (RFs) handle combinations of categorical, discrete and con-

tinuous variables in a natural way. There are at least three known ways of transforming

a DT or RF to a CP: a rule-based method using Boolean meta-constraints, table con-

straints, and MDD-based global constraints [4]. [18, 26] used a method similar to the

rule-based model for CP and MIP models. However, these are not generally thought of

as CA methods, and their usual aim is to speed up solution methods by learning part of

a model.

2.2 Large datasets

Not all CA systems scale up to large datasets but considerable effort has been put into

classifier scalability. Deep learning classifiers can handle class sizes in the millions, and

are often implemented on highly parallel architectures for speed. DTs and RFs have

fast greedy training algorithms based on entropy measures. SVMs have a fast training

algorithm based on quadratic programming. Naive Bayes classifiers have a very simple

training algorithm that simply counts occurrences to estimate probabilities, and can

easily handle very large datasets.

Taking the Bernoulli form of Naive Bayes as an example, if the data is binary then

the classifier reduces to a single linear constraint stating that an example must lie on

the positive side of the decision boundary. (If the data is nonbinary then we add binary

auxiliary variables and channeling constraints, using standard MIP or SAT techniques.

We omit the details for space reasons.) This might seem too trivial a model to be a

useful for CA, yet Naive Bayes famously works surprisingly well for many problems,

and the constraint model should be useful for the same applications, which include

recommender systems, sentiment analysis and credit card fraud detection.

2.3 Small datasets

[19] discuss the possibility of using classifiers to generate constraint models, but criti-

cise it on the grounds that the number of required examples grows exponentially with

the number of variables in the instances. However, some classifiers are explicitly de-

signed for small datasets [22]. In few-shot learning the training dataset has only a small

number of examples from each class, or just one in the case of one-shot learning. Re-

cent examples of such classifiers are Prototypical Networks [22] and Matching Net-

works [27] which are based on nearest-neighbour algorithms. Nearest-neighbour classi-

fiers have been applied to problems with both large and small datasets, including image

classification, recommender systems, document classification, medical diagnosis, facial

recognition and theft prevention.

We can derive constraint models for such classifiers. A particularly simple example

is the basic nearest-neighbour algorithm. If we have just one solution and one failure,

the classifier reduces to a single constraint stating that an example is closer to the so-

lution than to the failure. Depending on the distance metric, this might be expressed

using a CP global distance constraint. It can be generalised to multiple examples and

weighted k-nearest neighbours.



2.4 Imbalanced datasets

In some CA applications it is impractical to obtain a large dataset of negative examples.

For example we might collect solutions automatically, but have no idea what failures

look like. For such problems we can adapt one-class classifiers which are surveyed in

[14] and can be used when the negative class is absent, poorly sampled or ill-defined.

The aim of one-class classification is to recognise examples from a class, rather than

to discriminate between classes. Its many applications include the detection of abnor-

mal machine behaviour, automatic medical diagnosis and authorship verification [14].

Proposed approaches include a form of SVM, ANNs, DTs, nearest neighbours, genetic

algorithms and Bayesian methods.

A simple example is the method of [6], which computes the convex hull of the

training data (actually a computationally cheaper approximation based on random pro-

jections). A convex hull is a convex polytope which can be modelled exactly using a

linear program. If the data is integral then integrality constraints can be added to obtain

a MIP or finite-domain CSP.

The ModelSeeker CA system [2] also requires only positive instances, and has suc-

cessfully found global constraint models for several applications. However, applications

such as those above might not have a deep constraint structure to be discovered, and for

these a model based on a one-class classifier is an interesting alternative. Both are ideal

for historical data, but ModelSeeker requires a heuristic step to choose between alter-

native models.

2.5 Overfitting

Overfitting is a major problem in supervised learning, and occurs when a learner in-

terprets errors or noise as data, or places too much emphasis on outliers. Current CA

methods are not robust in this sense, and the seminal PAC learning algorithm of Valiant

[25] for SAT is highly vulnerable to outliers. In contrast, many classifiers are designed

to resist overfitting. For example soft-margin SVM explicitly allows a small number

of exceptions. Bayesian classifiers are particularly robust as they are probabilistic in

nature. Deep learning classifiers use the dropout technique to reduce overfitting by in-

troducing noise, and often use a validation dataset to detect its occurrence.

As an example we consider SVMs which are state-of-the-art for a vast range of ap-

plications, including medical diagnosis, fault detection and satellite data. The simplest

version learns a maximum-margin hyperplane, and we can impose a single constraint

stating that an example lies on its positive side. This can be generalised to soft mar-

gins, and adding a kernel leads to a nonlinear constraint. This possibility is mentioned

in [19] but criticised on the grounds that the resulting models are hard for humans to

understand. We discuss this point in Section 3.

2.6 Layered models

In the CA literature the learned model is usually a set of constraints on the given vari-

ables. However, it is well known in CP that better models are sometimes obtained by



defining extra auxiliary variables, on which it might be easier or more powerful to ex-

press certain constraints. Auxiliary and given variables are connected to each other by

adding channeling constraints to the model [7]. However, improved filtering is not the

only motivation for creating auxiliary variables: for some problems they greatly reduce

the size of the constraint model, for example the problem of finding covering arrays

[13] (see [12] chapter 11.8 for a discussion of similar techniques for other problems).

A similar result holds in SAT, where auxiliary variables can be used to obtain Tseitin

encodings that are exponentially smaller than “flat” encodings [24].

Although auxiliary variables are an important modeling technique, their automatic

discovery has not been addressed in the CA literature. Constraint models derived from

DTs contain auxiliary variables, but they do not resemble the models generated by

human experts and are not introduced explicitly to reduce model size. Ideally we require

a method for discovering useful auxiliary variables, arranged in layers and connected

by channeling constraints, which lead to compact constraint models.

For this we propose Deep Learning (DL) classifiers which have recently swept the

field in many areas, including image and video analysis, bioinformatics and malware

detection. It is known in DL that, although feedforward networks with a single hidden

layer are universal approximators that can model any function with arbitrary accuracy,

deep networks can be much more compact. DL also has techniques for reducing net-

work size [5, 9] which in CLASSACQ leads directly to smaller constraint models. We

therefore conjecture that CA will be particularly powerful when based on deep learning

to learn what we might call deep constraint models. Compiling ANNs to optimisation

models is well-known (see Section 3) but its connection to CA and compact layered

models has not been previously pointed out, nor the use of network compression tech-

niques to reduce model size.

3 Related work

Examples of CA systems include ModelSeeker [2] which requires only a few positive

instances, and finds high-level descriptions in terms of global constraints; Tacle [15]

which learns functions and constraints from spreadsheets; CONACQ [3] which is based

on version spaces, and has passive and active versions; and the framework of [28] which

learns several types of CP model by expressing CA as a constraint problem. Other

systems for CA and related areas are cited in [3, 11, 20].

It is known that DTs can be transformed into constraint models [4, 18, 26], as can

ANNs using neuron constraints [1, 16, 18]. ANNs can also be transformed to MIP mod-

els [8, 21, 23]. However, these methods are not generally used for CA. [1] model hard-

to-describe parts of problems via neuron global constraints, embedded in a larger model

designed by an expert. [16] transform DTs and ANNs into solvers called “consistency

checking classifiers” which build propagators and answer partial queries. CLASSACQ

does not build propagators but it uses a wider range of classifiers. [4, 18] embed DTs

and ANNs into CP, MIP and other optimisation models. [8, 23] map ANNs to MIP to

find inputs that optimise some objective, such as finding optimal adversarial examples

or proving that none exist. [21] map ANNs to MIP, to solve planning problems with

continuous action spaces. Thus DTs and ANNs have been mapped several times to var-



ious optimisation models, but usually not exactly for a CA application. Moreover, other

classifiers have been neglected in this context, and we believe that several models we

outlined are new. [17] survey the use of ML methods to boost combinatorial problem

modelling, including the representation of ML methods within optimisation problems.

They view CA as an extreme case in which an ML model completely replaces an op-

timisation model. In our view, as the aim of CA is to learn a constraint model that is

compatible with given data, using classifiers to learn a complete constraint model is a

form of passive CA.

[19] learn mathematical programming models from noisy training instances, con-

taining linear, quadratic and trigonometric constraints. Their constraint synthesis method

models and solves the CA problem as a MIP, using parameters to control features such

as the number of allowed constraints, and their models are human-readable. They dis-

cuss the possibility of an approach similar to CLASSACQ, and mention that converting a

trained ANN to a mathematical programming model requires the introduction of auxil-

iary variables and additional constraints, but they criticise this idea in two ways. Firstly,

they mention a curse of dimensionality associated with CA: that the number of required

examples grows exponentially with the number of variables in the instances. However,

some classifiers are explicitly designed for very small datasets (as discussed in Sec-

tion 2.3). Secondly, they mention the possibility of using classifiers such as SVMs and

Naive Bayes to generate constraints representing decision boundaries between positive

and negative instances, but criticise this approach on the grounds of transparency. We

argue that constraint models need not be transparent for all applications, for example for

testing whether a partial assignment can be extended to a positive example, for finding

optimal adversarial examples, or for verifying classifier properties.

4 Conclusion

In this paper we have argued that CA can be achieved by finding a constraint model for

a trained classifier. This idea, which we call CLASSACQ, has been briefly mentioned

in the Machine Learning literature but criticised as impractical, and has not been pur-

sued in the CA literature. We outlined several new classifier-based constraint models,

and results from the classification literature indicate that these can alleviate drawbacks

that have barely been addressed in CA: mixed-type data; large, small and imbalanced

datasets; overfitting; and discovering layered compact models with auxiliary variables

and channeling constraints (considered an advanced modelling technique in CP).

We conjecture that any trained classifier can, at least in principle, be used to derive

a constraint model of some form. The diversity of known classifiers is therefore an

important asset for CA: different classifiers and models have different advantages and

suit different applications. Because classification is a mature field with many highly

accurate and efficient algorithms, CLASSACQ greatly enriches the available tools and

application areas for CA.

We believe that this connection is a useful research direction for CA, with many

classifiers waiting to be used for special applications, and more efficient constraint

models waiting to be discovered. We could also take advantage of work on automat-

ing classifier selection in classifier portfolios, and extend it to take into account the



suitability of the derived constraint models. This is a work in progress and we aim to

present computational results in the near future.

Acknowledgments This publication has emanated from research supported in part by a

research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289

which is co-funded under the European Regional Development Fund. A version of this

work was also presented at the IJCAI’19 workshop “Data Science Meets Optimisation”.

References

1. A. Bartolini, M. Lombardi, M. Milano, L. Benini. Neuron Constraints to Model Complex

Real-World Problems. Proceedings of the 17th International Conference on Principles and

Practice of Constraint Programming, Lecture Notes in Computer Science vol. 6876, 2011,

pp. 115–129.

2. N. Beldiceanu, H. Simonis. ModelSeeker: Extracting Global Constraint Models from Posi-

tive Examples. Data Mining and Constraint Programming, Lecture Notes in Computer Sci-

ence vol. 10101, Springer 2016, pp. 77–95.

3. C. Bessiere, F. Koriche, N. Lazaara, B. O’Sullivan. Constraint Acquisition. Artificial Intelli-

gence 244:315–342, 2017.

4. A. Bonfietti, M. Lombardi, M. Milano. Embedding Decision Trees and Random Forests in

Constraint Programming. Proceedings of the International Conference on AI and OR Tech-

niques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes

in Computer Science, Springer 2015, pp. 74–90.

5. D. Browne, M. Giering, S. D. Prestwich. Pulse-Net: Dynamic Compression of Convolutional

Neural Networks. Proceedings of the IEEE 5th World Forum on Internet of Things, 2019.

6. P. Casale, O. Pujol, P. Radeva. Approximate Convex Hulls Family for One-Class Classifi-

cation. Proceedings of the International Workshop on Multiple Classifier Systems, Lecture

Notes in Computer Science vol. 6713, 2011, pp. 106–115.

7. B. M. W. Cheng, K. M. F. Choi, H. H. M. Lee, J. C. K. Wu. Increasing Constraint Propagation

by Redundant Modeling: an Experience Report. Constraints 4:167–192, 1999.

8. M. Fischetti, J. Jo. Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasi-

bility Study. Constraints 23(3):296–309, 2018.

9. J. Frankle, M. Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural

Networks. Proceedings of the International Conference on Learning Representations, 2019

(to appear).

10. E. C. Freuder. Constraints: The Ties that Bind. Proceedings of the 21st National Conference

on Artificial Intelligence, AAAI Press 2006, pp. 1520–1523.

11. E. C. Freuder. Progress Towards the Holy Grail. Constraints 23:158–171, 2018.

12. I. P. Gent, K. E. Petrie, J.-F. Puget. Handbook of Constraint Programming, Elsevier, 2006.

13. B. Hnich, S. D. Prestwich, E. Selensky, B. M. Smith. Constraint Models for the Covering

Test Problem. Constraints 11(3):199–219, 2006.

14. S. S Khan, M. Madden. One-Class Classification: Taxonomy of Study and Review of Tech-

niques. The Knowledge Engineering Review 29(3):345–374, 2014.

15. S. Kolb, S. Paramonov, T. Guns, L. De Raedt. Learning Constraints in Spreadsheets and

Tabular Data. Machine Learning 106:1441–1468, 2017.

16. A. Lallouet, A. Legtchenko. Two Contributions of Constraint Programming to Machine

Learning. Proceedings of the European Conference on Machine Learning, Lecture Notes

in Artificial Intelligence vol. 3720, Springer 2005, pp. 617–624.



17. M. Lombardi, M. Milano. Boosting Combinatorial Problem Modeling with Machine Learn-

ing. Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018,

pp. 5472–5478.

18. M. Lombardi, M. Milano, A. Bartolini. Empirical Decision Model Learning. Artificial Intel-

ligence 244(Supplement C):343–367, 2017.

19. T. P. Pawlak, K. Krawiec. Automatic Synthesis of Constraints from Examples Using Mixed

Integer Linear Programming. European Journal of Operational Research 261(3):1141–1157,

2017.

20. L. De Raedt, A. Passerini, S. Reso. Learning Constraints from Examples. Proceedings of the

32nd AAAI Conference on Artificial Intelligence, 2018, pp. 7965–7970.

21. B. Say, G. Wu, Y. Q. Zhou, S. Sanner. Nonlinear Hybrid Planning With Deep Net Learned

Transition Models and Mixed-Integer Linear Programs. Proceedings of the 26th Interna-

tional Joint Conference on Artificial Intelligence, 2017, pp. 750–756.

22. J. Snell, K. Swersky, R. Zemel. Prototypical Networks for Few-shot Learning. Proceedings

of the 31st Conference on Neural Information Processing Systems, 2017.

23. V. Tjeng, R. Tedrake. Verifying Neural Networks with Mixed Integer Programming. CoRR,

2017.

24. G. Tseitin. On The Complexity of Derivation in Propositional Calculus. Automation of Rea-

soning: Classical Papers in Computational Logic 2:466–483, J. Siekmann and G. Wrightson

(eds.), Springer-Verlag, 1983.

25. L. G. Valiant. A Theory of the Learnable. Communications of the ACM 27(11):1134–1142,

1984.

26. S. Verwer, Y. Zhang, Q. C. Ye. Auction Optimization Using Regression Trees and Linear

Models as Integer Programs. Artificial Intelligence 244:368–395, 2017.

27. O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching Networks for

One Shot Learning. Proceedings of the 30th Conference on Neural Information Processing

Systems, 2016, pp. 3637–3645.

28. X.-H. Vu, B. O’Sullivan. A Unifying Framework for Generalized Constraint Acquisition.

International Journal on Artificial Intelligence Tools 17(5):803–833, 2008.


