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ABOUT THIS TALK

I Overview of a (relatively young) research project
I Lots of open questions
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MOTIVATION

I Our take on explainable AI
I Context: Constraint solving
I Provide human-understandable explanations of inferences made by a

constraint solver
I Interactive constraint solving



4

HISTORY

I 2019 Holy Grail Challenge: Logic Grid Puzzles
I Parse puzzles and translate into CSP
I Solve CSP automatically
I Explain in a human-understandable way how to solve this puzzle

I More generic paper at ECAI 2020 [1]
I Journal version and follow-up conference paper under review.
I Project proposal under review.
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WHAT WE WORKED ON ALREADY

I Formalize the step-wise explanation problem
I Propose an algorithm (agnostic of actual propagators, consistency

level, etc.)
I Propose heuristics for guiding the search for explanations
I Experimentally demonstrate feasibility
I (unpublished) Nested explanations (conceptual extension)
I (unpublished) Incremental OMUS algorithms (efficiency bottleneck)
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LOGIC GRID PUZZLES

I Set of clues
I Sets of entities that need to be linked
I Each entitity is linked to exactly one entity of each other type (bijectivity)
I The links are consistent (transitivity)
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DEMO

I Automatically generated constraint representation from natural
language (no optimization of hte constraints for the explanation
problem)

I No modifications to the underlying solvers (we do not equip each
propagator with explanation mechanisms)

I demo: https://bartbog.github.io/zebra/pasta/

https://bartbog.github.io/zebra/pasta/
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SOME TERMINOLOGY

Logic Constraint Programming
(partial) interpretation (partial) assignment
theory model
model solution/satisfying assignment

I will use propositional logic for the formalization: Boolean variables;
interpretations are sets of literals, ...
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PROBLEM

Definition
Let Ii−1 and Ii be partial interpretations such that Ii−1 ∧ T |= Ii. We say that
(Ei,Si,Ni) explains the derivation of Ii from Ii−1 if the following hold:
I Ni = Ii \ Ii−1 (i.e., Ni consists of all newly defined facts),
I Ei ⊆ Ii (i.e., the explaining facts are a subset of what was previously

derived),
I Si ⊆ T (i.e., a subset of the clues and implicit constraints are used), and
I Si ∪ Ei |= Ni (i.e., all newly derived information indeed follows from this

explanation).
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PROBLEM

Definition
We call (Ei,Si,Ni) a non-redundant explanation of the derivation of Ii from Ii−1
if it explains this derivation and whenever E′ ⊆ Ei;S′ ⊆ Si while (E′,S′,Ni)
also explains this derivation, it must be that Ei = E′,Si = S′.

Observation: computing non-redundant explanations of a single literal can
be done using Minimal Unsat Core (MUS) extraction:

Theorem
There is a one-to-one correspondence between ⊆-minimal unsatisfiable cores
of Ii ∧ T ∧ ¬l and non-redundant explanations of Ii ∪ {l} from Ii.
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PROBLEM

Definition
We call (Ei,Si,Ni) a non-redundant explanation of the derivation of Ii from Ii−1
if it explains this derivation and whenever E′ ⊆ Ei;S′ ⊆ Si while (E′,S′,Ni)
also explains this derivation, it must be that Ei = E′,Si = S′.

Furthermore, we assume existence of a cost function f(Ei,Si,Ni) that
quantifies the interpretability of a single explanation
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PROBLEM

Definition
Given a theory T and initial partial interpretation I0, the
explanation-production problem consist of finding a non-redundent
explanation sequence

(I0, (∅, ∅, ∅)), (I1, (E1,S1,Ni)), . . . , (In, (En,Sn,Nn))

such that a predefined aggregate over the sequence (f(Ei,Si,Ni))i≤n is
minimised.
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ALGORITHM

I Greedy algorithm (max aggregate)
I At each step, for each solution literal, find a MUS ∗
I Pick the cheapest (cost-wise)
I (some caching)

I Under the hood: IDP system [3]
I ∗ single MUS call does not suffice
I ∗ Pruning based on optimistic approximation of cost
I ∗ no guarantee of optimality
I ∗ inefficient!
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LOGIC GRID PUZZLE

I Visual explanation interface
I Cost function:

I Single implicit axiom: very cheap
I Single constraint + implicit: less cheap
I Multiple constraints: very expensive

“The person who ordered capellini is either Damon or Claudia”.

∃p : ordered(p, capellini) ∧ (p = Damon ∨ p = Claudia).
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USE CASES

I Teach humans how to solve a certain problem
I Quantify problem difficulty
I “Help” button
I Interactive configuration/planning/scheduling
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NEXT STEPS: NESTED EXPLANATION

I Idea: explanations at different levels of abstraction
I Explain hardest steps of the sequence
I Counterfactual reasoning/proof by contradiction
I See demo https://bartbog.github.io/zebra/pasta/

https://bartbog.github.io/zebra/pasta/
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NEXT STEPS: OMUS COMPUTATION

I Algorithms to compute Optimal MUSs
I Based on hitting-set duality
I Combining existing SMUS (#-minimal) [6, 5] algorithms and MAXSAT [2]

algorithms
I Incremental OMUS computation
I Constrained OMUS computation
I No experimental results yet
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MORE FUTURE WORK

I Learning the optimization function (from humans) – Learning the level
of abstraction

I Explaining optimization (different types of “why” queries); close relation
to Explainable AI Planning [4]

I Scaling up (approximate algorithms; decomposition of explanation
search)

I Incremental algorithms over different “why” queries



21

REFERENCES

[1] Bart Bogaerts, Emilio Gamba, Jens Claes, and Tias Guns. Step-wise explanations of
logic problems by automated reasoning. In Proceedings of ECAI 2020, 2020. in press.

[2] Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT
solving. In Christian Schulte, editor, CP, volume 8124, pages 247–262. Springer, 2013.

[3] Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker.
Predicate logic as a modelling language: The IDP system. CoRR, abs/1401.6312v2, 2016.

[4] Maria Fox, Derek Long, and Daniele Magazzeni. Explainable planning. arXiv preprint
arXiv:1709.10256, 2017.

[5] Alexey Ignatiev, Mikolás Janota, and João Marques-Silva. Quantified maximum
satisfiability. Constraints, 21(2):277–302, 2016.

[6] Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and Jo a o Marques - Silva.
Smallest MUS extraction with minimal hitting set dualization. In Gilles Pesant, editor,
Principles and Practice of Constraint Programming - 21st International Conference, CP
2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture
Notes in Computer Science, pages 173–182. Springer, 2015.


	References

