

Microsoft

PDP: A General Neural Framework for Learning Constraint Satisfaction Solvers

Saeed Amizadeh

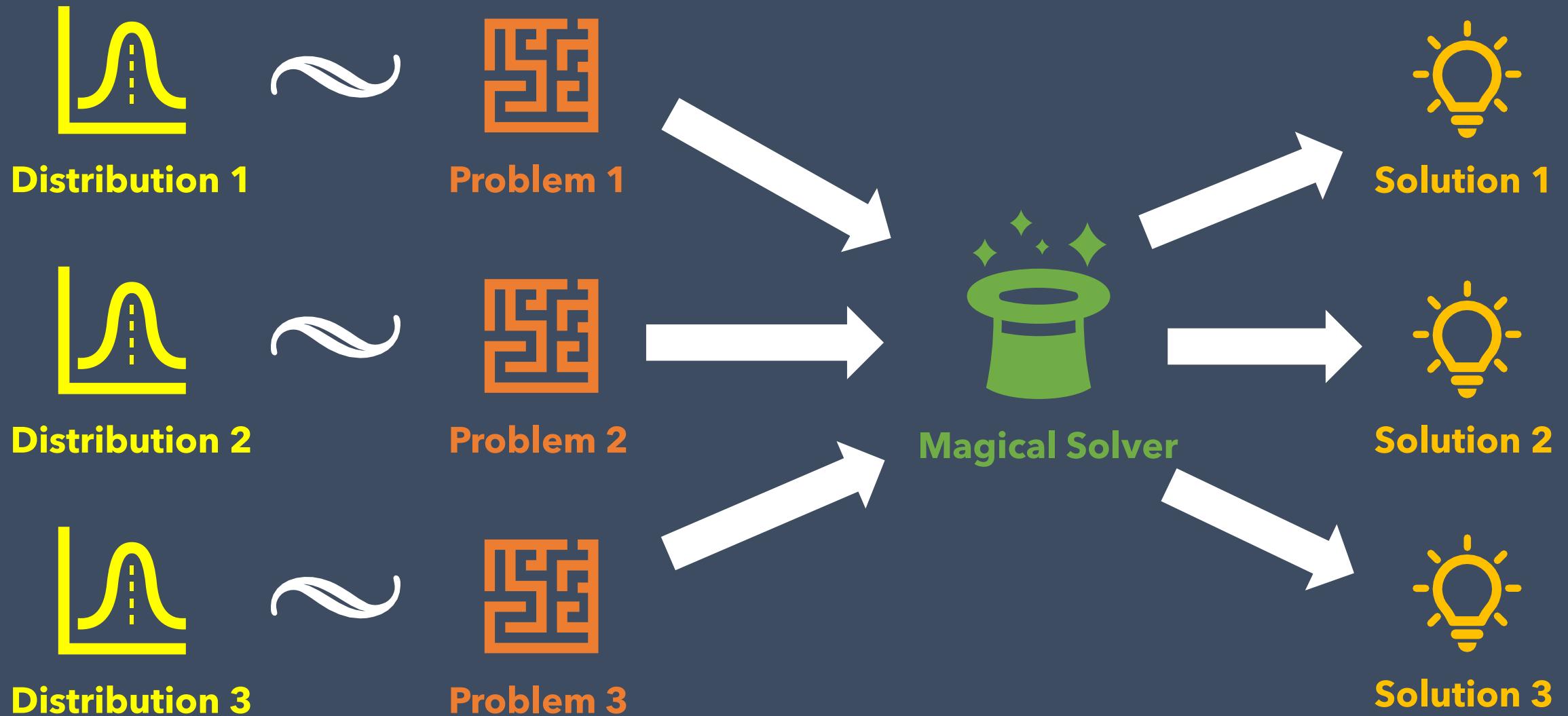
saamizad@microsoft.com

Applied Sciences Lab

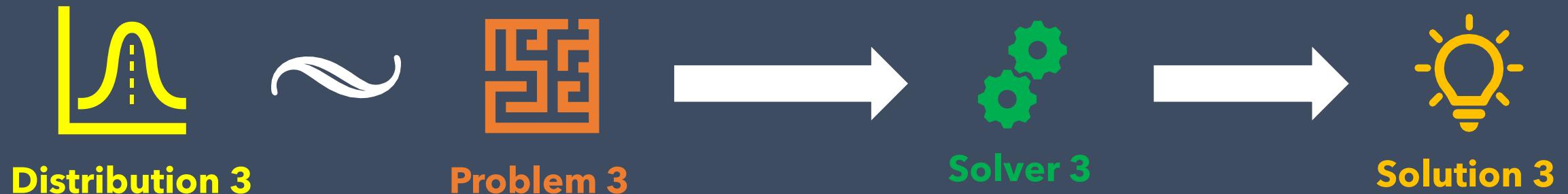
My General Interest

- How **signals** and **symbols** interact in Deep Learning.
- **Neuro-symbolic methods** augment traditional deep learning on continuous input with the power of symbolic calculation.
 - **At the present:** neuro-symbolic visual reasoning, Differentiable First-Order Logic.
 - **In the past:** neural SAT solving.

In the Ideal World...



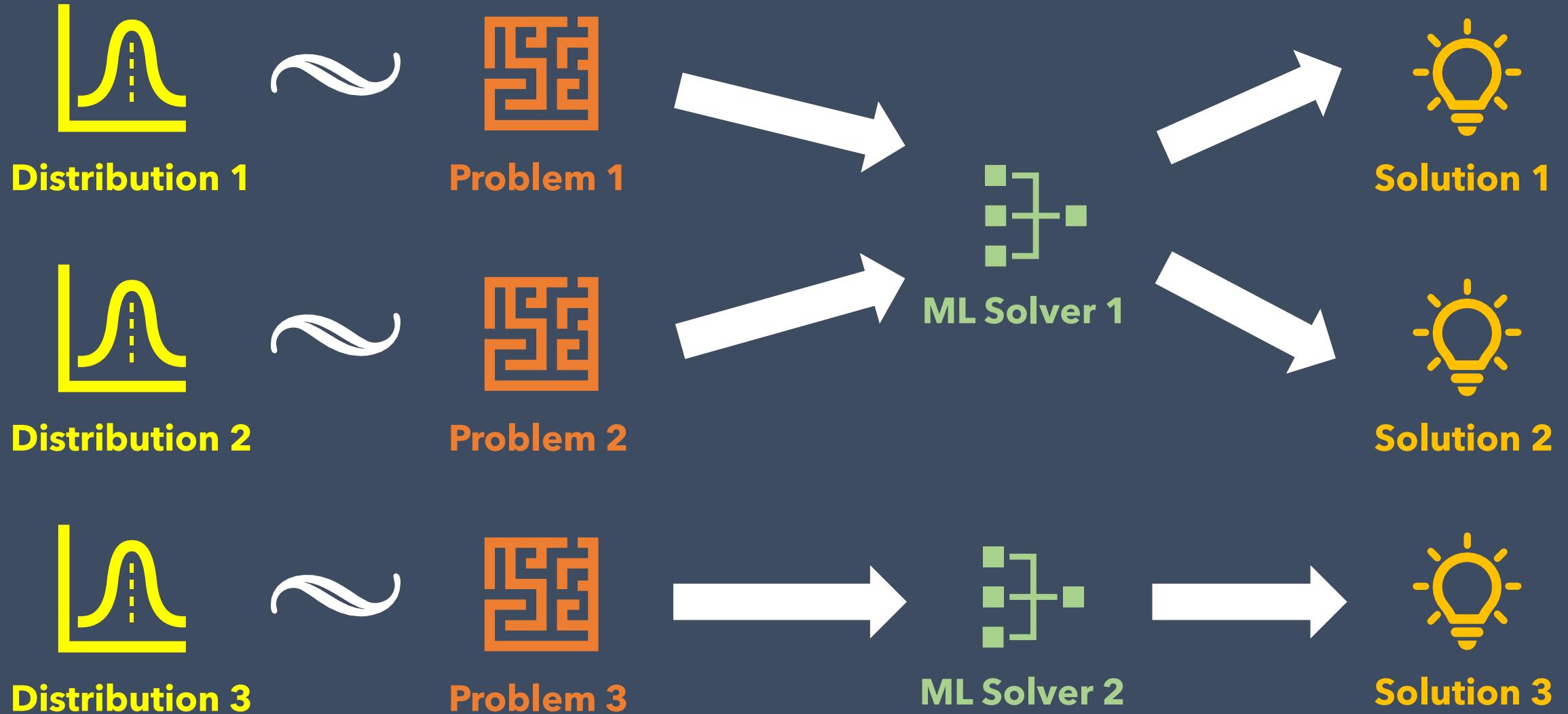
In the Real World...



But What If...

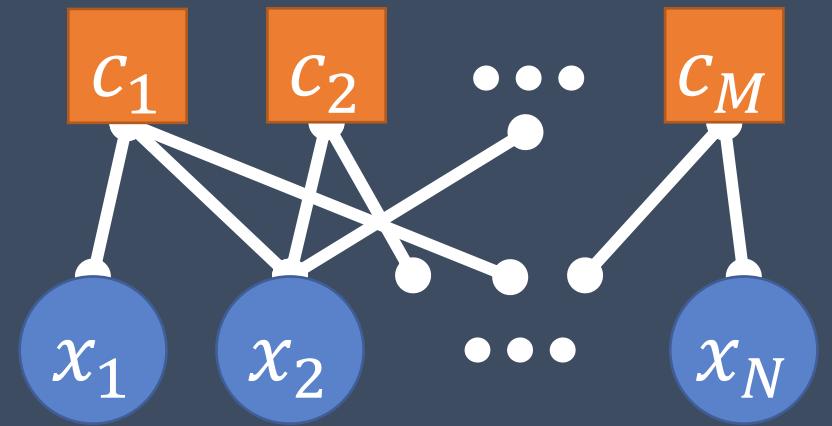
- For a new problem distribution, instead of **manually designing a new solver algorithm** from scratch, we could just **train a new solver model** from data.
- The trained model could further pick up from data the **problem solving strategies** that were overlooked by the human algorithm designers.

The Allure of Machine Learning



CSP & SAT

- A set of **Variables**: $X = \{x_i\}_{i=1}^N$
 - $x_i \in \mathcal{X}$, where \mathcal{X} is a discrete set of values (for SAT $\mathcal{X} = \{0,1\}$).
- A set of **Constraints**: $C = \{c_a\}_{a=1}^M$
 - $c_a: \mathcal{X}^{|\partial a|} \rightarrow \{0,1\}$
 - ∂a = a set of variables participating in c_a



Factor Graph Representation (FGR)

The Neuro-Symbolic Approach

Classical ML

Can perform **learning & soft-computing**

Does not work with **discrete structures**

Not necessarily **scale-invariant**

Classical Solver

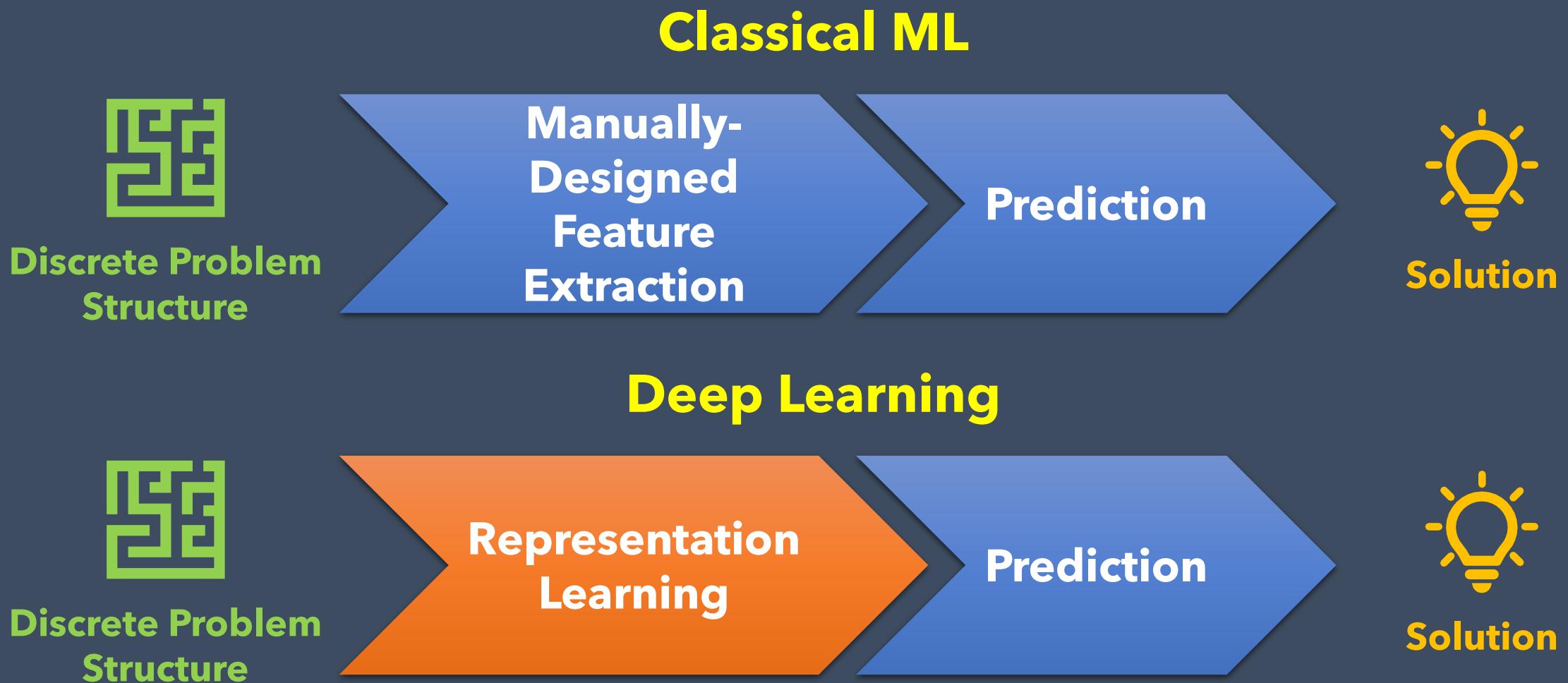
Can not do **learning & soft-computing**

Understands **symbols & discrete structures**

Scale-invariant

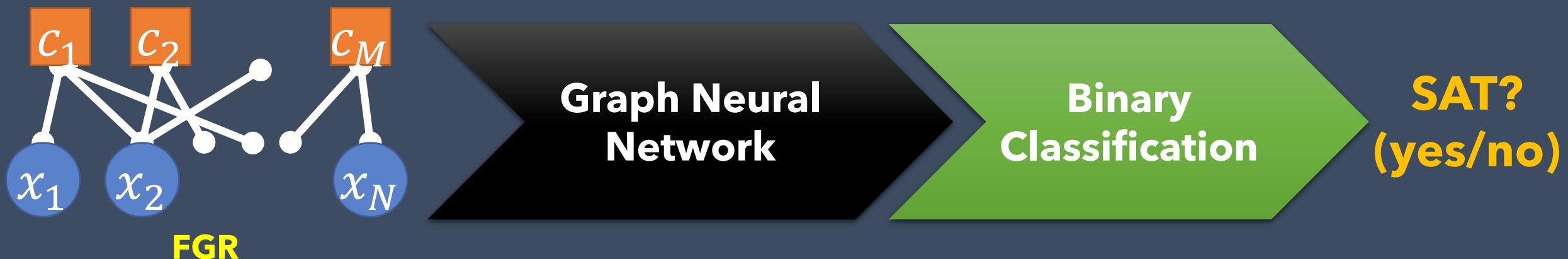
- **Approach A:** Start from a ML model → make it understand discrete CSP structure.
- **Approach B:** Start from a classical solver → make it incorporate ML.

Approach A: How to Represent the **Problem Structure**



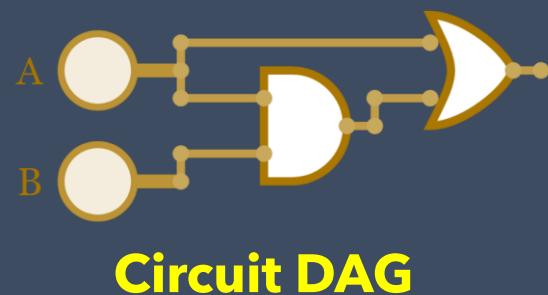
Approach A: NeuroSAT [Selsam et al, 2018]

- NeuroSAT learns **structural patterns** in **FGR** that predict **satisfiability**.
- Uses **Graph Neural Networks (GNN)** for representation learning.



Approach A: Neural Circuit-SAT [Amizadeh et al, 2018]

- Intuition: a **circuit** has more useful **structural signals** in it compared to the flat CNF.
- Uses **Directed-Acyclic Graph (DAG) Neural Network** for representation learning.
- Trains **directly** toward solving the SAT problem via **Energy Minimization**.

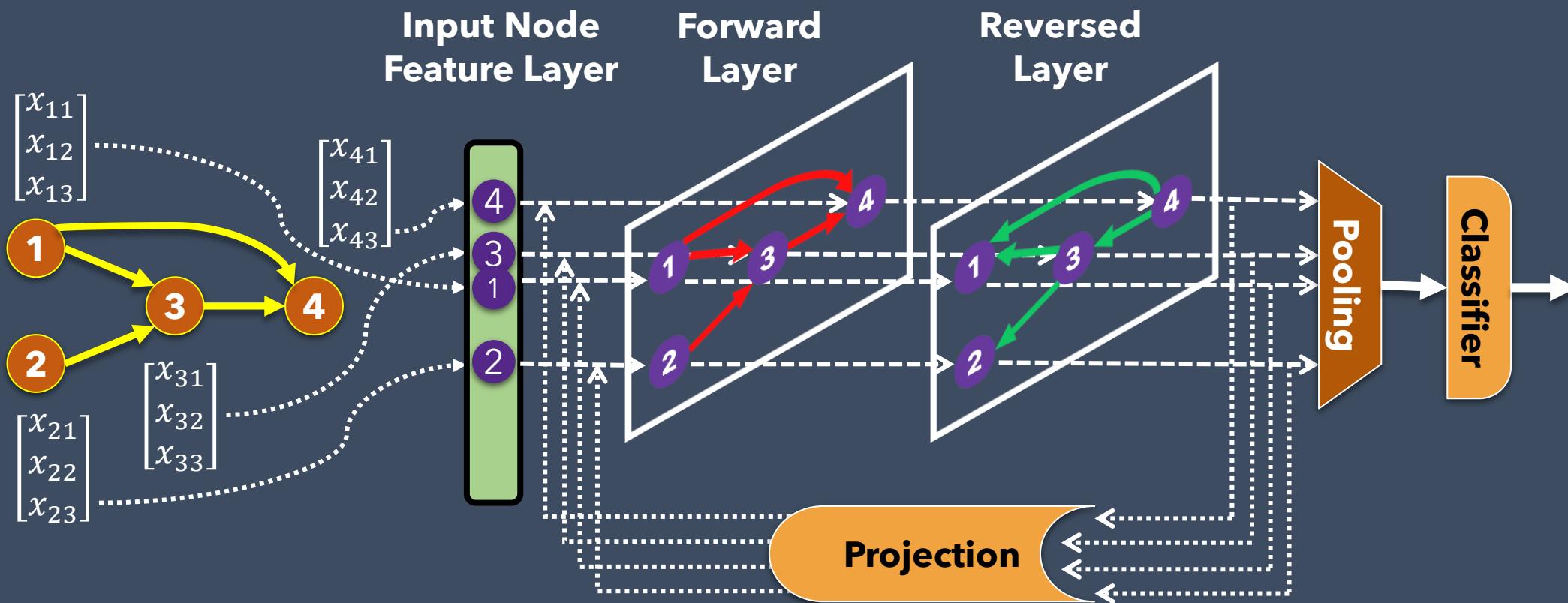


DAG Neural Network

Assignment Prediction

Approach A: Neural Circuit-SAT [Amizadeh et al, 2018]

DAG Neural Network



Approach A: Pros & Cons

- **Pros:**
 - It's a **generic approach** that can theoretically be applied to any CSP/SAT problem distribution.
- **Cons:**
 - It does not employ **useful inductive biases** present in classical solvers.
 - **Generalization** to **larger-scale problems** at the test time is not straightforward.

The Neuro-Symbolic Approach

Classical ML

Can perform **learning & soft-computing**

Does not work with **discrete structures**

Not necessarily **scale-invariant**

Classical Solver

Can not do **learning & soft-computing**

Understands **symbols & discrete structures**

Scale-invariant

- **Approach A:** Start from a ML model → make it understand discrete CSP structure.
- **Approach B:** Start from a classical solver → make it incorporate ML.

PDP Belongs to Approach B Group!

**Message Passing
solvers based on
Probabilistic
Inference**

**Neural
Relaxation**

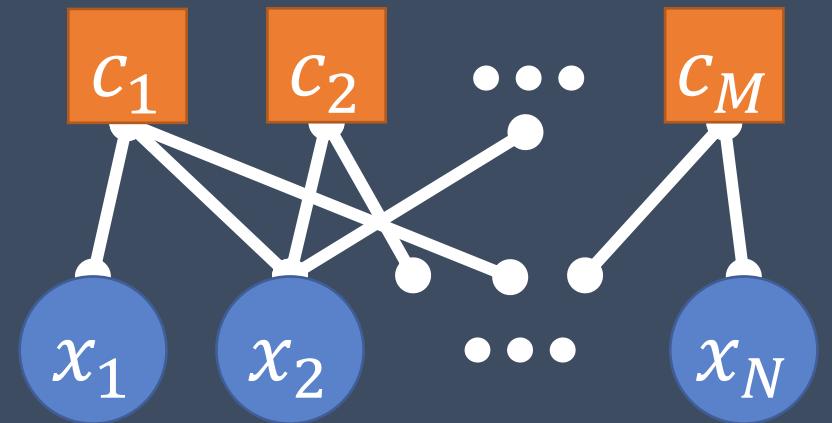
PDP

SAT Solving as Probabilistic Inference

- Solving a SAT problem can be formulated as:

$$X^* = \arg \max_X \frac{1}{Z} \cdot \prod_{a=1}^M \phi_a(x_{\partial a})$$

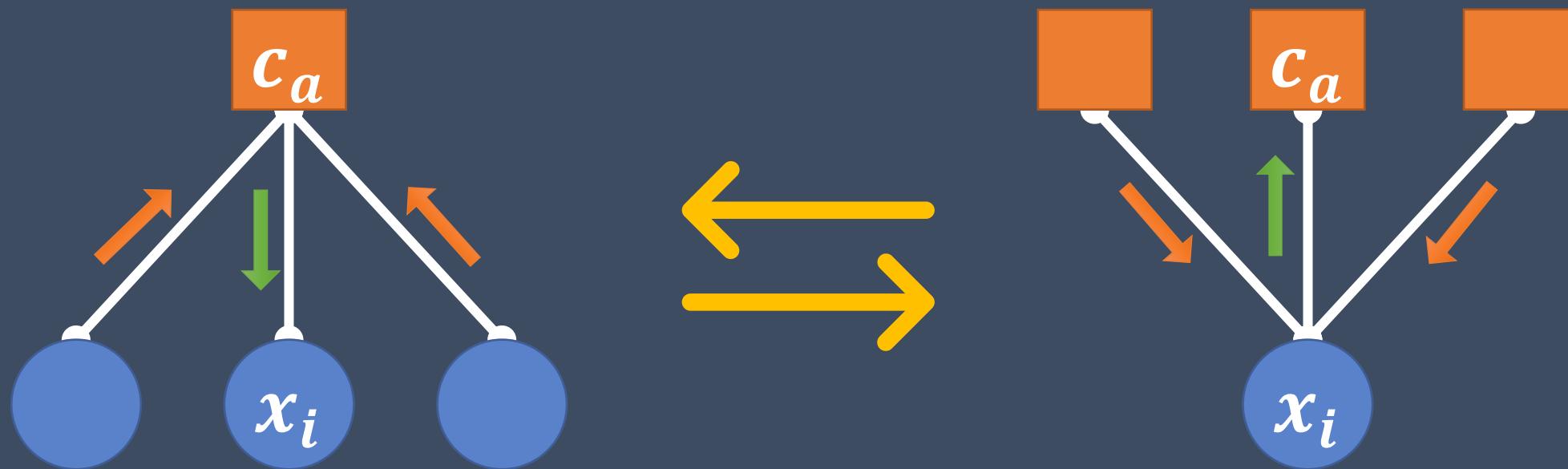
$$\phi_a(x_{\partial a}) = \max [c_a(x_{\partial a}), \epsilon]$$



Factor Graph
Graphical Model

Generalized Message Passing (GMP)

Step 1 - Iterative message passing

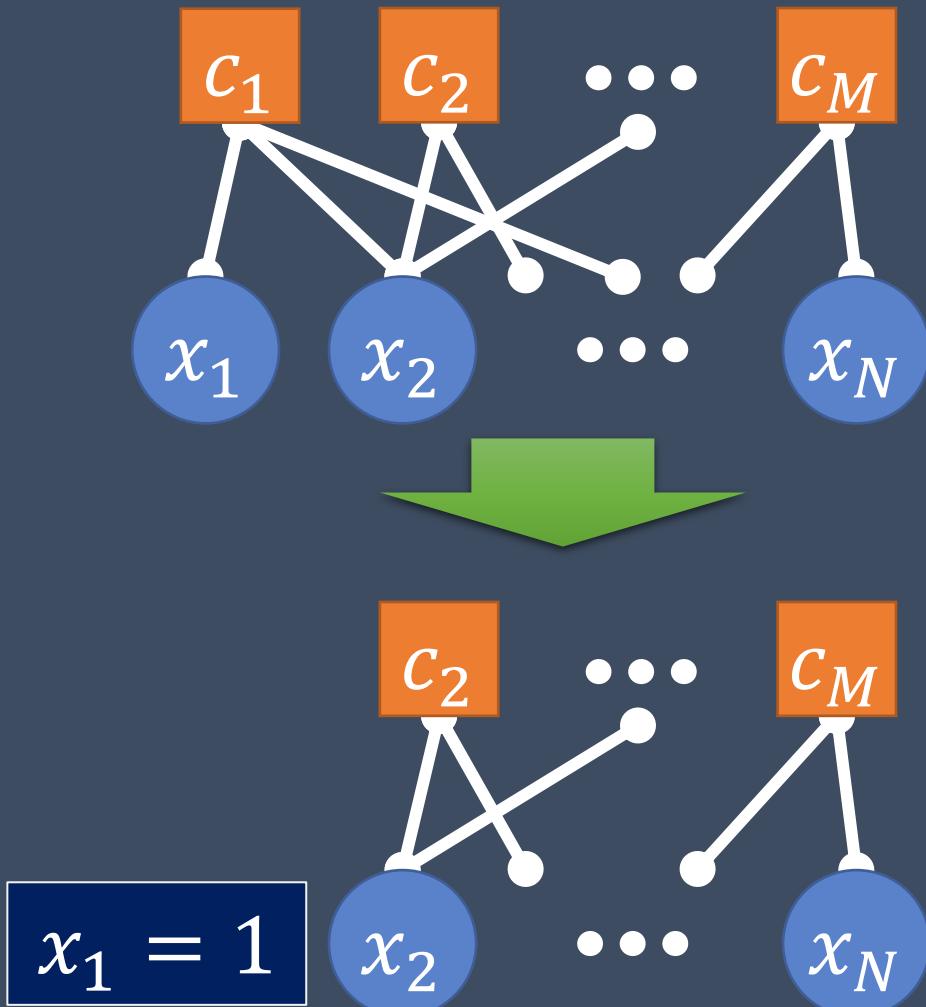


$$m_{a \rightarrow i}^{(t)} = \mathcal{F}_a \left(\left\{ m_{j \rightarrow a}^{(t-1)} : j \in \partial a \setminus i \right\} \right) \quad m_{i \rightarrow a}^{(t)} = \mathcal{G}_i \left(\left\{ m_{b \rightarrow i}^{(t-1)} : b \in \partial i \setminus a \right\} \right)$$

Generalized Message Passing (GMP)

Step 2 - Sequential decimation

- Pick the variable with the largest **certainty criterion**.
- Set it to a value according to its **polarity spin**.
- **Simplify** the factor graph.
- Go back to Step 1.



Generalized Message Passing (GMP)

- GMP is a **generic template** for many well-known algorithms characterized by the **choice of \mathcal{F} and \mathcal{G}** :
 - Belief Propagation (aka Sum-Product) Algorithm
 - Max-Product Algorithm
 - Min-Sum Algorithm
 - Warning Propagation Algorithm
 - Survey Propagation Algorithm (SP)

Relaxing GMP Toward a Neural Model

GMP

Message = a **scalar** value in \mathbb{R}

Decimation only runs **after** MP is **converged**.

Sequential decimation affects **only one variable** at a time.

Sequential decimation = **Fixing** a **variable** to a **value**

Its Neural Relaxation

Message = a **vector** in \mathbb{R}^d

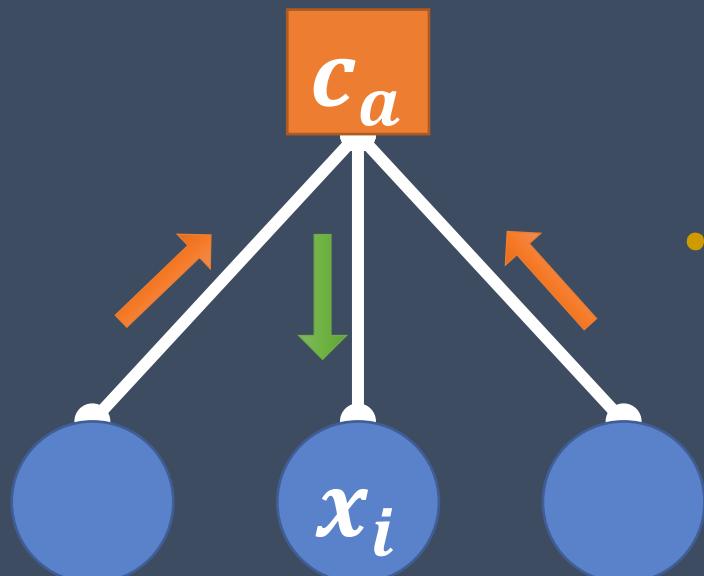
Decimation & MP run **concurrently**.

All variables are affected during **neural decimation**.

Neural decimation = **Transforming** **messages** in a **stateful manner**.

Propagation Decimation Prediction (PDP)

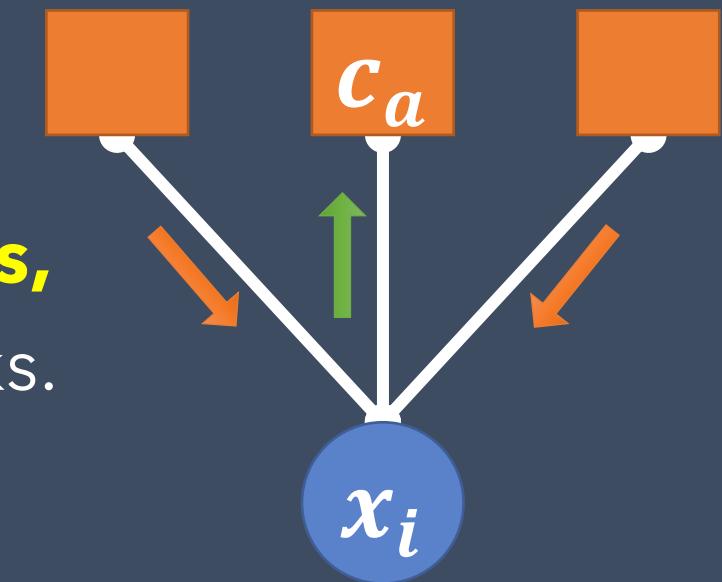
Step 1 - Propagation



- The propagators are **stateless, feed-forward** neural networks.

$$p_{a \rightarrow i}^{(t)} = \Psi_\gamma \left(\left\{ d_{j \rightarrow a}^{(t-1)} : j \in \partial a \setminus i \right\} \right)$$

$$p_{i \rightarrow a}^{(t)} = \Psi_\theta \left(\left\{ d_{b \rightarrow i}^{(t-1)} : b \in \partial i \setminus a \right\} \right)$$



Propagation Decimation Prediction (PDP)

Step 2 - Decimation



- The decimators are **stateful, recurrent** neural networks.

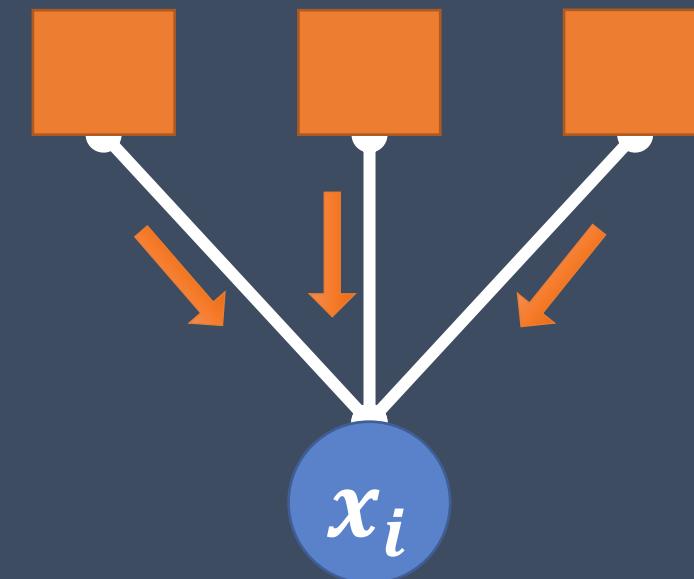
$$d_{a \rightarrow i}^{(t)} = \Phi_{\omega} \left(p_{a \rightarrow i}^{(t)}, d_{a \rightarrow i}^{(t-1)} \right)$$

$$d_{i \rightarrow a}^{(t)} = \Phi_{\nu} \left(p_{i \rightarrow a}^{(t)}, d_{i \rightarrow a}^{(t-1)} \right)$$

Propagation Decimation Prediction (PDP)

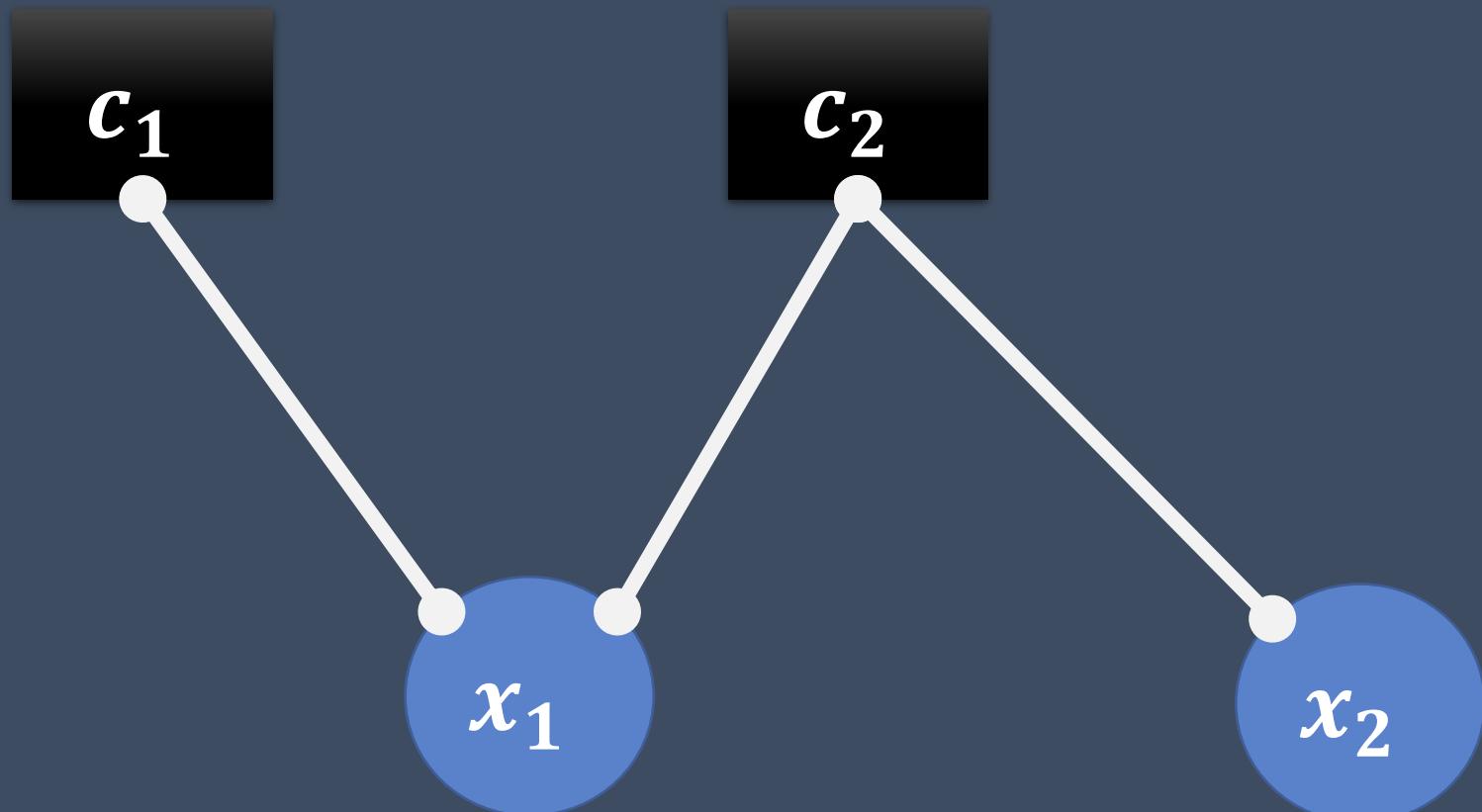
Step 3 - Prediction

- At each time t , the Prediction Step predicts a **soft assignment** for each variable in $[0, 1]$.

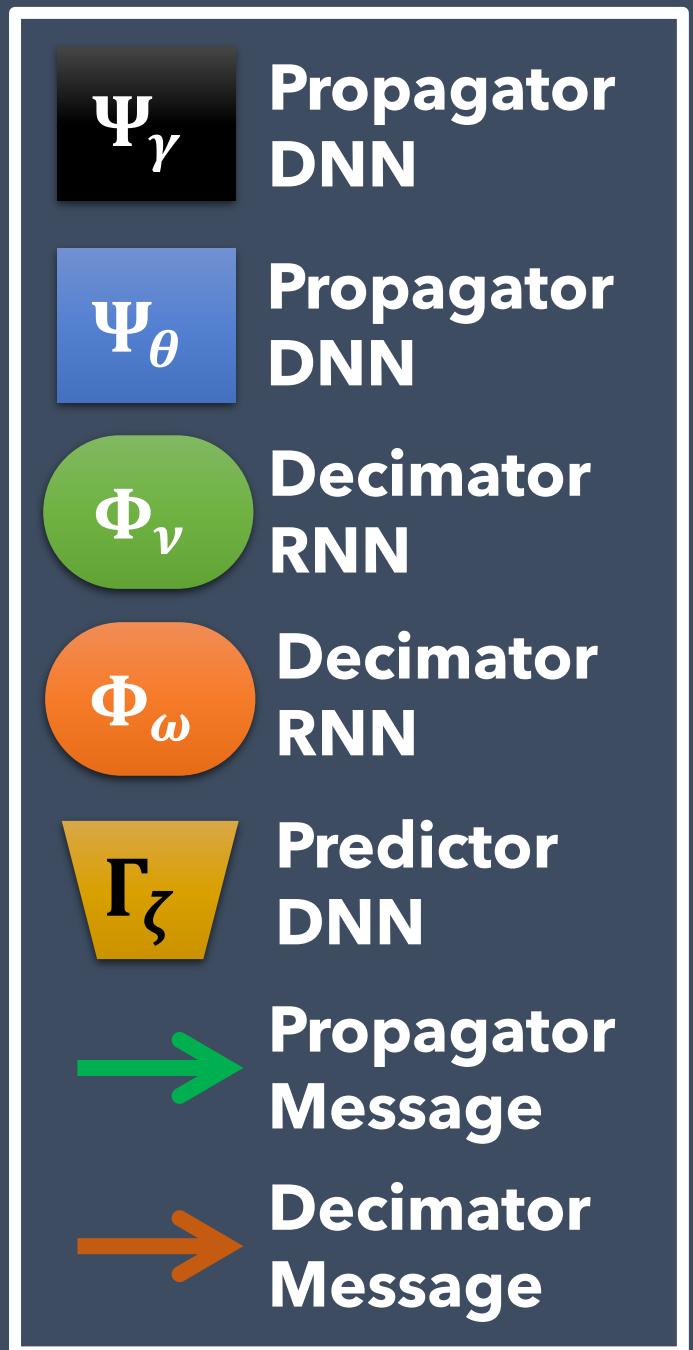


$$x_i^{(t)} = \Gamma_\zeta \left(\left\{ d_{b \rightarrow i}^{(t)} : b \in \partial i \right\} \right)$$

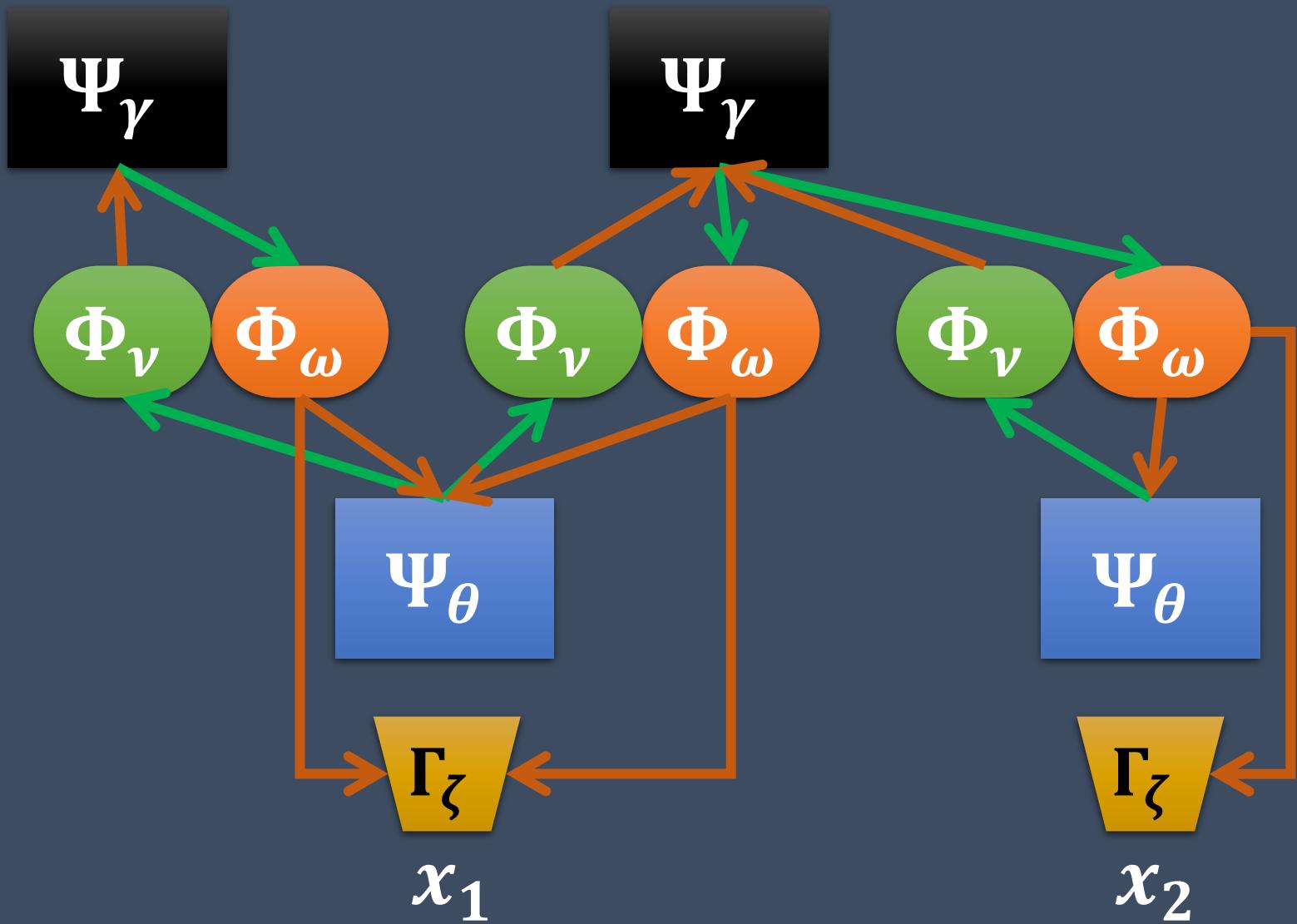
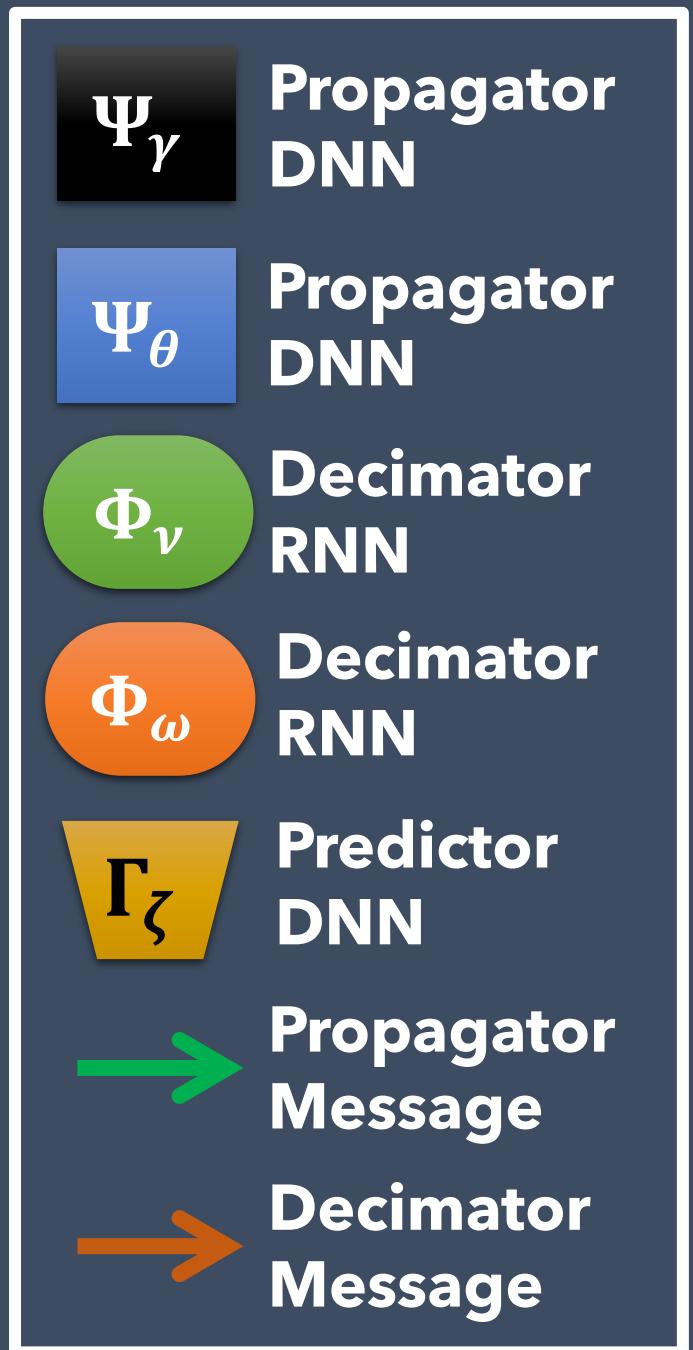
PDP Neural Architecture



$$x_1 \wedge (\sim x_1 \vee x_2)$$



PDP Neural Architecture



PDP: Unsupervised Training

- PDP is trained in **unsupervised fashion** via **Discounted Accumulated Energy Minimization**.

$$\mathcal{E}(X) = \log Z - \sum_{a=1}^M \log \tilde{\phi}(x_{\partial a})$$

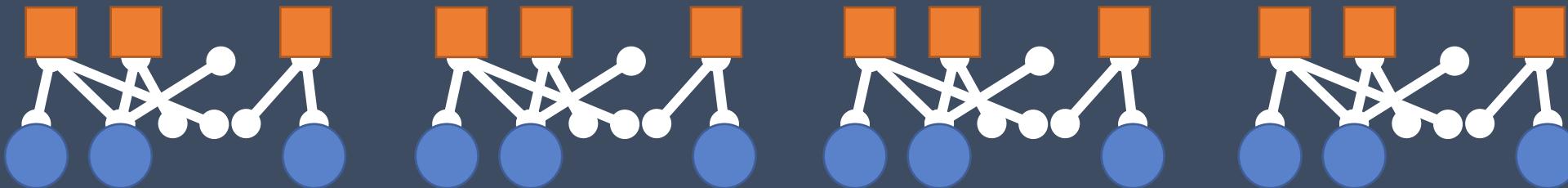
Differentiable surrogate for the constraint potential

$$\mathcal{L}_\lambda(X^{(t)}) = \sum_{t=1}^{T_{max}} \lambda^{(T_{max}-t)} \cdot \mathcal{E}(X^{(t)})$$

Encourages the model to find the solution faster.

Parallelization & Batch Replication

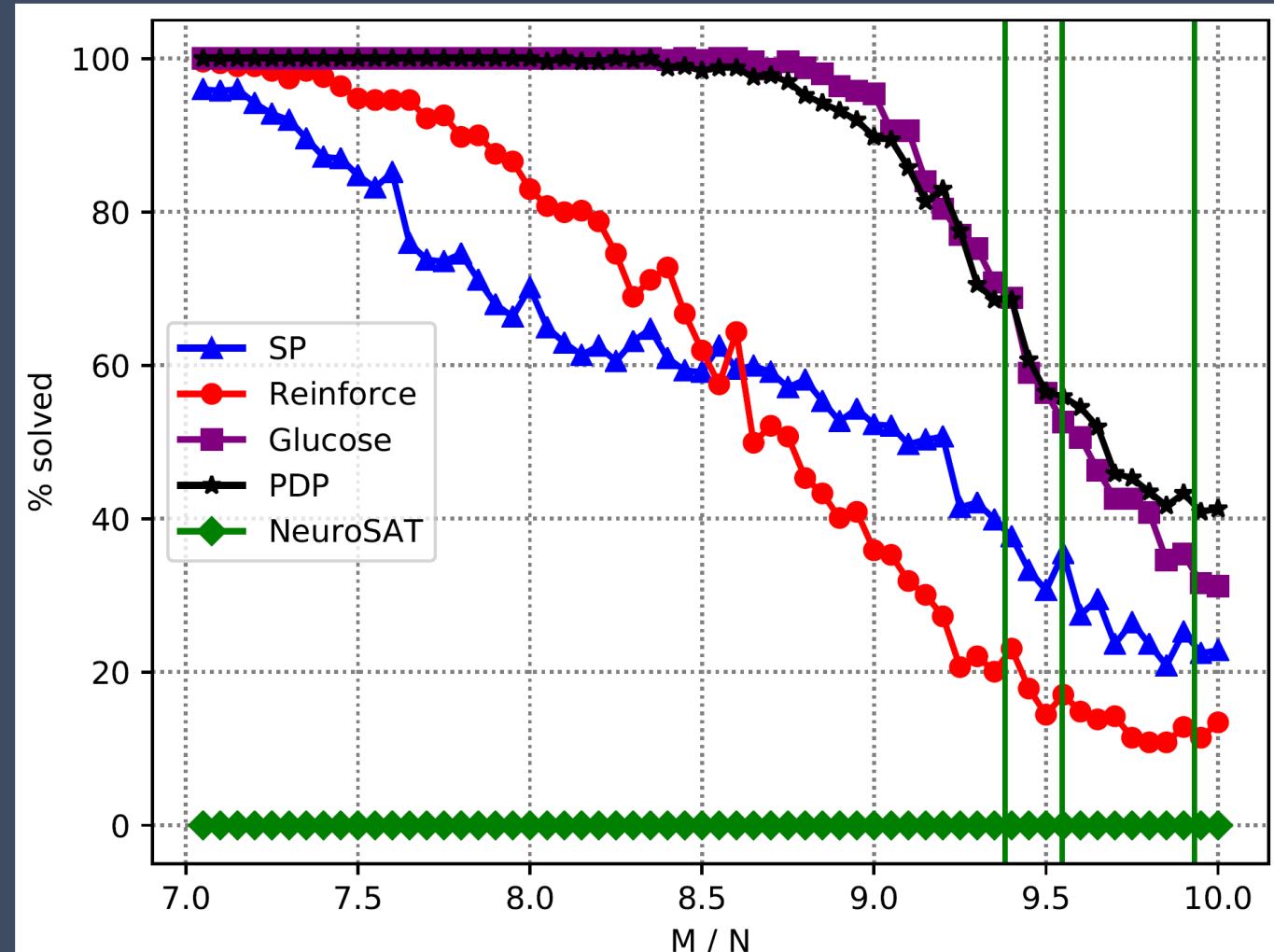
- **Parallelization**: we can run PDP on multiple problem instances **in parallel** by **concatenating** their factor graphs into a big one.



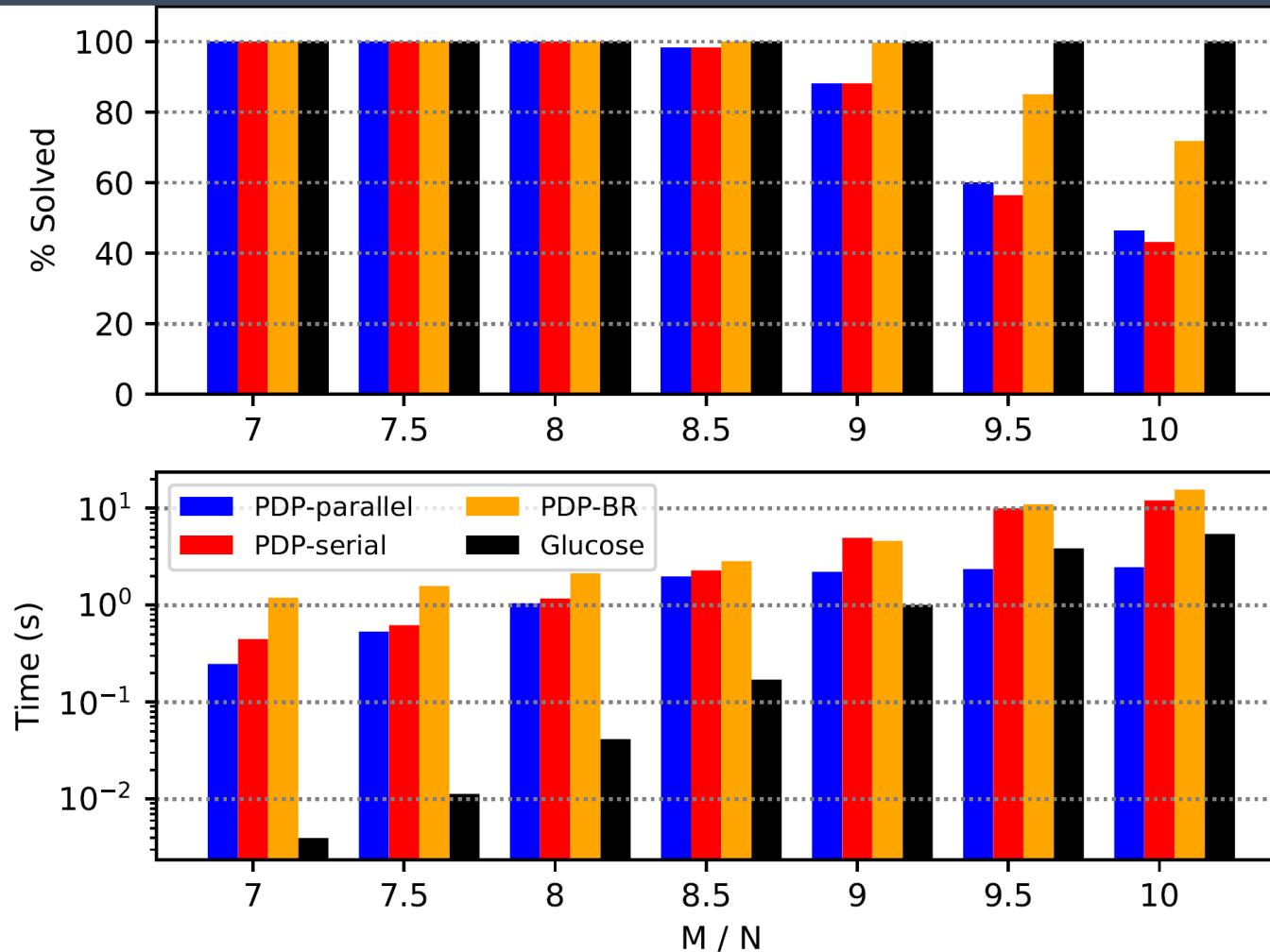
- **Batch Replication**: we can **replicate** the **same problem** multiple times in a batch s.t. each replica starts with a **different initial message values**, so that we can find a solution faster.

Experimental Results: Uniform Random k-SAT

- Generated 500 random 4-SAT problems with 100 variables for each M/N ratio.
- Set $T_{max} = 1000$ for PDP-based methods which translates to 3s timeout threshold for Glucose.



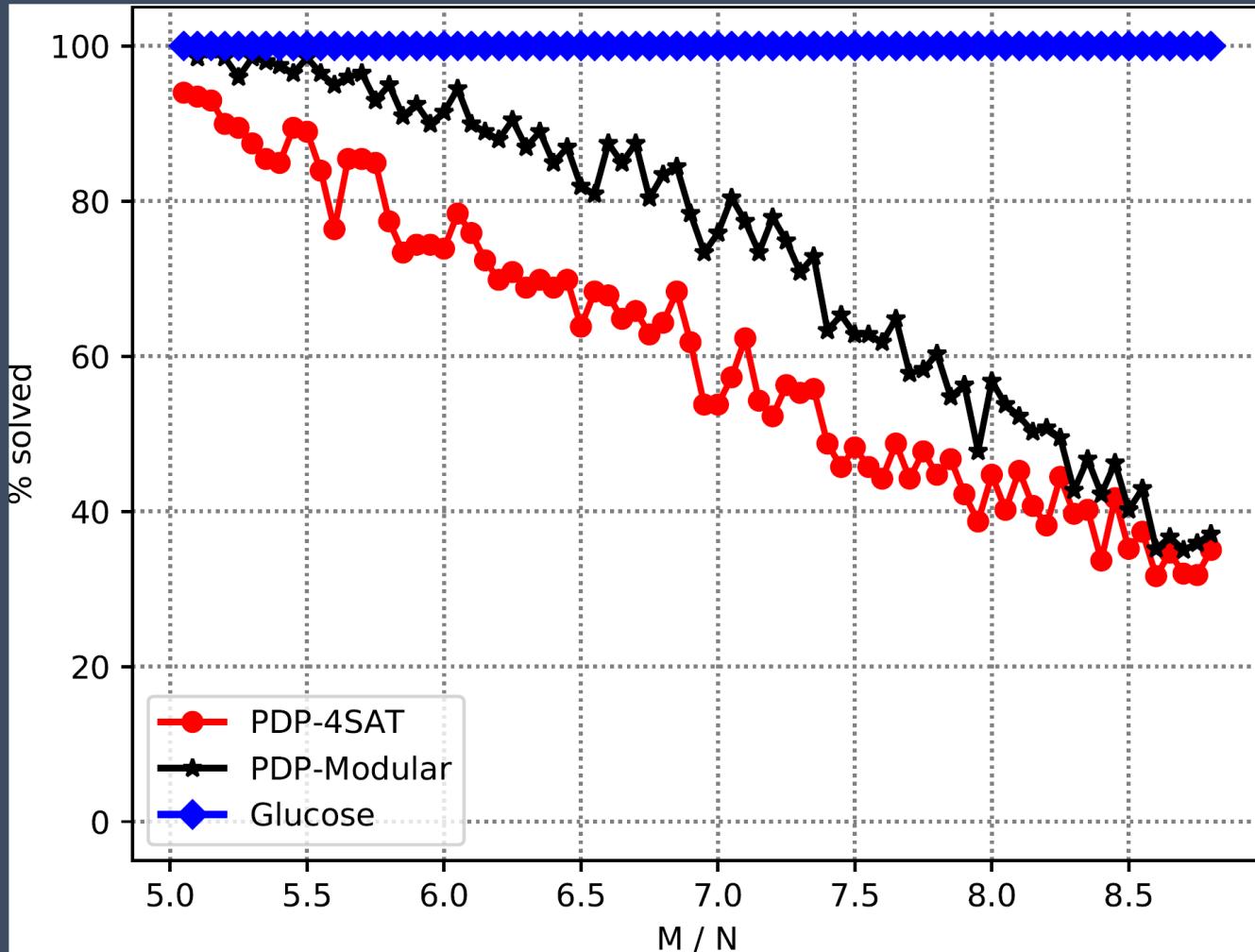
Experimental Results: Uniform Random k-SAT



- Eliminated Glucose's timeout.
- Compared it against:
 - PDP Parallel
 - PDP Serial
 - PDP Serial + Batch Replication
- Glucose wins but **Batch Replication** significantly improves serial PDP.

Experimental Results: Pseudo-Industrial Random k-SAT

- Many industrial SAT problems have **modular structure**.
- Used **Community Attachment** [Giraldez-Cru & Levy, 2016] model to generate modular SAT.
- PDP is capable of **adapting** to a new problem distribution.



Insights & Takeaways

Obviously, we are still **far away** from performing on par with **industrial solvers**, but...

- The ML approach to SAT provides us with **generic solution frameworks** that can **adapt** to **new problem distributions**.
- Approach B is **superior** to Approach A, because it enables us to encode informative **inductive biases** into the model.
- **Neural Relaxation** is a powerful methodology to arrive at Approach B frameworks.
- PDP serves as a **generic template** capable of realizing fully-neural as well as **hybrid models**.
- PDP is **highly parallel** and further enables us to implement classical **restart** via **batch replication**.

Important Directions Ahead

- Approaching other aspects of SAT via the ML approach, e.g. providing **proof of UNSAT**.
- Incorporating other powerful classical techniques such as **backtracking** into the neural framework.
- **Ideally, we want a generic neural framework with a right balance between ML components and powerful classical techniques that is end-to-end differentiable/trainable.**

Thank You!

- My co-authors:

Sergiy Matusevych,
Microsoft

Markus Weimer,
Microsoft

- The paper:

- <https://arxiv.org/abs/1903.01969>

- The open-source code:

- <https://github.com/microsoft/PDP-Solver>