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My General Interest

• How signals and symbols interact in Deep Learning.

• Neuro-symbolic methods augment traditional deep learning 

on continuous input with the power of symbolic calculation.

• At the present: neuro-symbolic visual reasoning, 

Differentiable First-Order Logic.

• In the past: neural SAT solving.
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In the Real World…
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But What If…

• For a new problem distribution, instead of manually designing 

a new solver algorithm from scratch, we could just train a new 

solver model from data.  

• The trained model could further pick up from data the problem 

solving strategies that were overlooked by the human 

algorithm designers.



The Allure of Machine Learning 
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CSP & SAT 

• A set of Variables:  𝑋 = 𝑥𝑖 𝑖=1
𝑁

• 𝑥𝑖 ∈ 𝓧, where 𝓧 is a discrete set of 

values (for SAT 𝓧 = {0,1}).

• A set of Constraints:  𝐶 = 𝑐𝑎 𝑎=1
𝑀

• 𝑐𝑎: 𝓧
|𝜕𝑎| ⟶ {0,1}

• 𝜕𝑎 = a set of variables participating 

in 𝑐𝑎

…

…
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The Neuro-Symbolic Approach

• Approach A: Start from a ML model → make it understand discrete 

CSP structure.

• Approach B: Start from a classical solver → make it incorporate ML.

Classical ML

Can perform learning & soft-computing

Does not work with discrete structures

Classical Solver

Understands symbols & discrete structures

Can not do learning & soft-computing

Not necessarily scale-invariant Scale-invariant



Approach A: How to Represent the Problem Structure 
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Approach A:  NeuroSAT [Selsam et al, 2018]

• NeuroSAT learns structural patterns in FGR that predict 

satisfiability.

• Uses Graph Neural Networks (GNN) for representation learning.
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Approach A:  Neural Circuit-SAT [Amizadeh et al, 2018]

• Intuition: a circuit has more useful structural signals in it 

compared to the flat CNF.

• Uses Directed-Acyclic Graph (DAG) Neural Network for 

representation learning.

• Trains directly toward solving the SAT problem via Energy 

Minimization.
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Approach A:  Neural Circuit-SAT [Amizadeh et al, 2018]
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Approach A:  Pros & Cons

• Pros:

• It’s a generic approach that can theoretically be applied to any 
CSP/SAT problem distribution.

• Cons:

• It does not employ useful inductive biases present in classical 
solvers.

• Generalization to larger-scale problems at the test time is not 
straightforward.



The Neuro-Symbolic Approach

• Approach A: Start from a ML model → make it understand discrete 

CSP structure.

• Approach B: Start from a classical solver → make it incorporate ML.

Classical ML

Can perform learning & soft-computing

Does not work with discrete structures

Classical Solver

Understands symbols & discrete structures

Can not do learning & soft-computing
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PDP Belongs to Approach B Group!

Message Passing 
solvers based on 

Probabilistic 
Inference 

Neural 
Relaxation

PDP



SAT Solving as Probabilistic Inference

• Solving a SAT problem can be 

formulated as:

𝑿∗ = 𝐚𝐫𝐠𝐦𝐚𝐱
𝑿

𝟏

𝒁
∙ෑ

𝒂=𝟏

𝑴

𝝓𝒂 𝒙𝝏𝒂

𝝓𝒂 𝒙𝝏𝒂 = 𝐦𝐚𝐱 𝒄𝒂(𝒙𝝏𝒂), 𝝐

…
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Generalized Message Passing (GMP)
Step 1 – Iterative message passing

𝒙𝒊

𝒄𝒂 𝒄𝒂

𝒙𝒊

𝒎𝒂→𝒊
𝒕

= 𝓕𝒂 𝒎𝒋→𝒂
𝒕−𝟏

: 𝒋 ∈ 𝝏𝒂 \𝒊 𝒎𝒊→𝒂
𝒕

= 𝓖𝒊 𝒎𝒃→𝒊
𝒕−𝟏

: 𝒃 ∈ 𝝏𝒊 \𝒂



Generalized Message Passing (GMP)
Step 2 – Sequential decimation

• Pick the variable with the largest 

certainty criterion.

• Set it to a value according to its 

polarity spin.

• Simplify the factor graph.

• Go back to Step 1.

…

…
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Generalized Message Passing (GMP)

• GMP is a generic template for many well-known algorithms 

characterized by the choice of 𝓕 and 𝓖:

• Belief Propagation (aka Sum-Product) Algorithm

• Max-Product Algorithm

• Min-Sum Algorithm

• Warning Propagation Algorithm

• Survey Propagation Algorithm (SP)



Relaxing GMP Toward a Neural Model

GMP Its Neural Relaxation

Message = a scalar value in ℝ Message = a vector in ℝ𝒅

Decimation only runs after MP is 
converged.

Decimation & MP run concurrently.

Sequential decimation affects only 
one variable at a time.

All variables are affected during 
neural decimation.

Sequential decimation = Fixing a 
variable to a value

Neural decimation = Transforming 
messages in a stateful manner.



Propagation Decimation Prediction (PDP)
Step 1 – Propagation

𝒙𝒊

𝒄𝒂 𝒄𝒂

𝒙𝒊

𝒑𝒂→𝒊
𝒕

= 𝚿𝜸 𝒅𝒋→𝒂
𝒕−𝟏

: 𝒋 ∈ 𝝏𝒂 \𝒊 𝒑𝒊→𝒂
𝒕

= 𝚿𝜽 𝒅𝒃→𝒊
𝒕−𝟏

: 𝒃 ∈ 𝝏𝒊 \𝒂

• The propagators are stateless, 

feed-forward neural networks.



Propagation Decimation Prediction (PDP)
Step 2 – Decimation

𝒙𝒊

𝒄𝒂

𝒅𝒂→𝒊
𝒕

= 𝚽𝝎 𝒑𝒂→𝒊
𝒕
, 𝒅𝒂→𝒊

𝒕−𝟏

𝒙𝒊

𝒄𝒂

𝒅𝒊→𝒂
𝒕

= 𝚽𝝂 𝒑𝒊→𝒂
𝒕
, 𝒅𝒊→𝒂

𝒕−𝟏

• The decimators are stateful, 

recurrent neural networks.



Propagation Decimation Prediction (PDP)
Step 3 – Prediction

𝒙𝒊

𝒙𝒊
𝒕
= 𝚪𝜻 𝒅𝒃→𝒊

𝒕
: 𝒃 ∈ 𝝏𝒊

• At each time 𝑡, the Prediction 

Step predicts a soft assignment 

for each variable in [0, 1].
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PDP: Unsupervised Training

• PDP is trained in unsupervised fashion via Discounted

Accumulated Energy Minimization.

ℇ 𝑿 = 𝐥𝐨𝐠 𝒁 −෍

𝒂=𝟏

𝑴

𝐥𝐨𝐠 ෩𝝓(𝒙𝝏𝒂)

𝓛𝝀 𝑿(𝒕) = ෍

𝒕=𝟏

𝑻𝒎𝒂𝒙

𝝀(𝑻𝒎𝒂𝒙−𝒕) ∙ ℇ(𝑿(𝒕))

Differentiable surrogate 
for the constraint potential

Encourages the model to 
find the solution faster.



Parallelization & Batch Replication

• Parallelization: we can run PDP on multiple problem instances 

in parallel by concatenating their factor graphs into a big one.

• Batch Replication: we can replicate the same problem 

multiple times in a batch s.t. each replica starts with a different 

initial message values, so that we can find a solution faster.



Experimental Results: Uniform Random k-SAT

• Generated 500 random 4-

SAT problems with 100 

variables for each Τ𝑴 𝑵

ratio.

• Set 𝑻𝒎𝒂𝒙 = 𝟏𝟎𝟎𝟎 for PDP-

based methods which 

translates to 3s timeout 

threshold for Glucose. 



Experimental Results: Uniform  Random k-SAT

• Eliminated Glucose’s

timeout.

• Compared it against:

• PDP Parallel

• PDP Serial

• PDP Serial + Batch Replication

• Glucose wins but Batch

Replication significantly 

improves serial PDP.



Experimental Results: Pseudo-Industrial  Random k-
SAT

• Many industrial SAT problems 

have modular structure.

• Used Community

Attachment [Giraldez-Cru & 

Levy, 2016] model to 

generate modular SAT.

• PDP is capable of adapting to 

a new problem distribution.



Insights & Takeaways
Obviously, we are still far away from performing on par with 
industrial solvers, but…

• The ML approach to SAT provides us with generic solution 
frameworks that can adapt to new problem distributions.

• Approach B is superior to Approach A, because it enables us to 
encode informative inductive biases into the model.

• Neural Relaxation is a powerful methodology to arrive at Approach 
B frameworks.

• PDP serves as a generic template capable of realizing fully-neural 
as well as hybrid models.

• PDP is highly parallel and further enables us to implement classical 
restart via batch replication.



Important Directions Ahead

• Approaching other aspects of SAT via the ML approach, e.g. 

providing proof of UNSAT.

• Incorporating other powerful classical techniques such as

backtracking into the neural framework.

• Ideally, we want a generic neural framework with a right 

balance between ML components and powerful classical 

techniques that is end-to-end differentiable/trainable.



Thank You!

• My co-authors:

• The paper:

• https://arxiv.org/abs/1903.01969

• The open-source code:

• https://github.com/microsoft/PDP-

Solver
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