
PDP: A General Neural
Framework for Learning
Constraint Satisfaction

Solvers

saamizad@microsoft.com

Applied Sciences Lab

mailto:saamizad@microsoft.com

My General Interest

• How signals and symbols interact in Deep Learning.

• Neuro-symbolic methods augment traditional deep learning

on continuous input with the power of symbolic calculation.

• At the present: neuro-symbolic visual reasoning,

Differentiable First-Order Logic.

• In the past: neural SAT solving.

In the Ideal World…

Problem 1 Solution 1

Magical Solver

Distribution 1

Problem 2Distribution 2

Problem 3Distribution 3

Solution 2

Solution 3

In the Real World…

Problem 1 Solution 1Distribution 1

Problem 2Distribution 2

Problem 3Distribution 3

Solution 2

Solution 3

Solver 1

Solver 2

Solver 3

But What If…

• For a new problem distribution, instead of manually designing

a new solver algorithm from scratch, we could just train a new

solver model from data.

• The trained model could further pick up from data the problem

solving strategies that were overlooked by the human

algorithm designers.

The Allure of Machine Learning

Problem 1 Solution 1Distribution 1

Problem 2Distribution 2

Problem 3Distribution 3

Solution 2

Solution 3

ML Solver 1

ML Solver 2

CSP & SAT

• A set of Variables: 𝑋 = 𝑥𝑖 𝑖=1
𝑁

• 𝑥𝑖 ∈ 𝓧, where 𝓧 is a discrete set of

values (for SAT 𝓧 = {0,1}).

• A set of Constraints: 𝐶 = 𝑐𝑎 𝑎=1
𝑀

• 𝑐𝑎: 𝓧
|𝜕𝑎| ⟶ {0,1}

• 𝜕𝑎 = a set of variables participating

in 𝑐𝑎

…

…

𝑥1 𝑥𝑁

𝑐1 𝑐2 𝑐𝑀

Factor Graph Representation
(FGR)

𝑥2

The Neuro-Symbolic Approach

• Approach A: Start from a ML model → make it understand discrete

CSP structure.

• Approach B: Start from a classical solver → make it incorporate ML.

Classical ML

Can perform learning & soft-computing

Does not work with discrete structures

Classical Solver

Understands symbols & discrete structures

Can not do learning & soft-computing

Not necessarily scale-invariant Scale-invariant

Approach A: How to Represent the Problem Structure

Manually-
Designed

Feature
Extraction

Prediction
Discrete Problem

Structure
Solution

Classical ML

Representation
Learning

Prediction
Discrete Problem

Structure
Solution

Deep Learning

Approach A: NeuroSAT [Selsam et al, 2018]

• NeuroSAT learns structural patterns in FGR that predict

satisfiability.

• Uses Graph Neural Networks (GNN) for representation learning.

Graph Neural
Network

Binary
Classification

FGR

SAT?
(yes/no)

𝑥1 𝑥𝑁

𝑐1 𝑐2 𝑐𝑀

𝑥2

Approach A: Neural Circuit-SAT [Amizadeh et al, 2018]

• Intuition: a circuit has more useful structural signals in it

compared to the flat CNF.

• Uses Directed-Acyclic Graph (DAG) Neural Network for

representation learning.

• Trains directly toward solving the SAT problem via Energy

Minimization.

DAG Neural
Network

Assignment
Prediction

Circuit DAG
SAT

Solution

Approach A: Neural Circuit-SAT [Amizadeh et al, 2018]

1

3

2

4

𝑥11
𝑥12
𝑥13

𝑥21
𝑥22
𝑥23

𝑥31
𝑥32
𝑥33

𝑥41
𝑥42
𝑥43

Projection

P
o

o
lin

g

C
la

ssifie
r

4

3
1

2

Forward
Layer

Reversed
Layer

Input Node
Feature Layer

DAG Neural Network

Approach A: Pros & Cons

• Pros:

• It’s a generic approach that can theoretically be applied to any
CSP/SAT problem distribution.

• Cons:

• It does not employ useful inductive biases present in classical
solvers.

• Generalization to larger-scale problems at the test time is not
straightforward.

The Neuro-Symbolic Approach

• Approach A: Start from a ML model → make it understand discrete

CSP structure.

• Approach B: Start from a classical solver → make it incorporate ML.

Classical ML

Can perform learning & soft-computing

Does not work with discrete structures

Classical Solver

Understands symbols & discrete structures

Can not do learning & soft-computing

Not necessarily scale-invariant Scale-invariant

PDP Belongs to Approach B Group!

Message Passing
solvers based on

Probabilistic
Inference

Neural
Relaxation

PDP

SAT Solving as Probabilistic Inference

• Solving a SAT problem can be

formulated as:

𝑿∗ = 𝐚𝐫𝐠𝐦𝐚𝐱
𝑿

𝟏

𝒁
∙ෑ

𝒂=𝟏

𝑴

𝝓𝒂 𝒙𝝏𝒂

𝝓𝒂 𝒙𝝏𝒂 = 𝐦𝐚𝐱 𝒄𝒂(𝒙𝝏𝒂), 𝝐

…

…

𝑥1 𝑥𝑁

𝑐1 𝑐2 𝑐𝑀

Factor Graph
Graphical Model

𝑥2

Generalized Message Passing (GMP)
Step 1 – Iterative message passing

𝒙𝒊

𝒄𝒂 𝒄𝒂

𝒙𝒊

𝒎𝒂→𝒊
𝒕

= 𝓕𝒂 𝒎𝒋→𝒂
𝒕−𝟏

: 𝒋 ∈ 𝝏𝒂 \𝒊 𝒎𝒊→𝒂
𝒕

= 𝓖𝒊 𝒎𝒃→𝒊
𝒕−𝟏

: 𝒃 ∈ 𝝏𝒊 \𝒂

Generalized Message Passing (GMP)
Step 2 – Sequential decimation

• Pick the variable with the largest

certainty criterion.

• Set it to a value according to its

polarity spin.

• Simplify the factor graph.

• Go back to Step 1.

…

…

𝑥1 𝑥𝑁

𝑐1 𝑐2 𝑐𝑀

𝑥2

…

… 𝑥𝑁

𝑐2 𝑐𝑀

𝑥2𝑥1 = 1

Generalized Message Passing (GMP)

• GMP is a generic template for many well-known algorithms

characterized by the choice of 𝓕 and 𝓖:

• Belief Propagation (aka Sum-Product) Algorithm

• Max-Product Algorithm

• Min-Sum Algorithm

• Warning Propagation Algorithm

• Survey Propagation Algorithm (SP)

Relaxing GMP Toward a Neural Model

GMP Its Neural Relaxation

Message = a scalar value in ℝ Message = a vector in ℝ𝒅

Decimation only runs after MP is
converged.

Decimation & MP run concurrently.

Sequential decimation affects only
one variable at a time.

All variables are affected during
neural decimation.

Sequential decimation = Fixing a
variable to a value

Neural decimation = Transforming
messages in a stateful manner.

Propagation Decimation Prediction (PDP)
Step 1 – Propagation

𝒙𝒊

𝒄𝒂 𝒄𝒂

𝒙𝒊

𝒑𝒂→𝒊
𝒕

= 𝚿𝜸 𝒅𝒋→𝒂
𝒕−𝟏

: 𝒋 ∈ 𝝏𝒂 \𝒊 𝒑𝒊→𝒂
𝒕

= 𝚿𝜽 𝒅𝒃→𝒊
𝒕−𝟏

: 𝒃 ∈ 𝝏𝒊 \𝒂

• The propagators are stateless,

feed-forward neural networks.

Propagation Decimation Prediction (PDP)
Step 2 – Decimation

𝒙𝒊

𝒄𝒂

𝒅𝒂→𝒊
𝒕

= 𝚽𝝎 𝒑𝒂→𝒊
𝒕
, 𝒅𝒂→𝒊

𝒕−𝟏

𝒙𝒊

𝒄𝒂

𝒅𝒊→𝒂
𝒕

= 𝚽𝝂 𝒑𝒊→𝒂
𝒕
, 𝒅𝒊→𝒂

𝒕−𝟏

• The decimators are stateful,

recurrent neural networks.

Propagation Decimation Prediction (PDP)
Step 3 – Prediction

𝒙𝒊

𝒙𝒊
𝒕
= 𝚪𝜻 𝒅𝒃→𝒊

𝒕
: 𝒃 ∈ 𝝏𝒊

• At each time 𝑡, the Prediction

Step predicts a soft assignment

for each variable in [0, 1].

PDP Neural Architecture 𝚿𝜸
Propagator
DNN

𝚿𝜽
Propagator
DNN

𝚽𝝂
Decimator
RNN

𝚽𝝎
Decimator
RNN

𝚪𝜻
Predictor
DNN

Propagator
Message

Decimator
Message

𝒄𝟏 𝒄𝟐

𝒙𝟏 𝒙𝟐

𝒙𝟏 ∧ (∼ 𝒙𝟏 ∨ 𝒙𝟐)

PDP Neural Architecture 𝚿𝜸
Propagator
DNN

𝚿𝜽
Propagator
DNN

𝚽𝝂
Decimator
RNN

𝚽𝝎
Decimator
RNN

𝚪𝜻
Predictor
DNN

Propagator
Message

Decimator
Message

𝚿𝜸 𝚿𝜸

𝚿𝜽𝚿𝜽

𝚽𝝎𝚽𝝂 𝚽𝝎𝚽𝝂 𝚽𝝎𝚽𝝂

𝚪𝜻 𝚪𝜻

𝒙𝟏 𝒙𝟐

PDP: Unsupervised Training

• PDP is trained in unsupervised fashion via Discounted

Accumulated Energy Minimization.

ℇ 𝑿 = 𝐥𝐨𝐠 𝒁 −෍

𝒂=𝟏

𝑴

𝐥𝐨𝐠 ෩𝝓(𝒙𝝏𝒂)

𝓛𝝀 𝑿(𝒕) = ෍

𝒕=𝟏

𝑻𝒎𝒂𝒙

𝝀(𝑻𝒎𝒂𝒙−𝒕) ∙ ℇ(𝑿(𝒕))

Differentiable surrogate
for the constraint potential

Encourages the model to
find the solution faster.

Parallelization & Batch Replication

• Parallelization: we can run PDP on multiple problem instances

in parallel by concatenating their factor graphs into a big one.

• Batch Replication: we can replicate the same problem

multiple times in a batch s.t. each replica starts with a different

initial message values, so that we can find a solution faster.

Experimental Results: Uniform Random k-SAT

• Generated 500 random 4-

SAT problems with 100

variables for each Τ𝑴 𝑵

ratio.

• Set 𝑻𝒎𝒂𝒙 = 𝟏𝟎𝟎𝟎 for PDP-

based methods which

translates to 3s timeout

threshold for Glucose.

Experimental Results: Uniform Random k-SAT

• Eliminated Glucose’s

timeout.

• Compared it against:

• PDP Parallel

• PDP Serial

• PDP Serial + Batch Replication

• Glucose wins but Batch

Replication significantly

improves serial PDP.

Experimental Results: Pseudo-Industrial Random k-
SAT

• Many industrial SAT problems

have modular structure.

• Used Community

Attachment [Giraldez-Cru &

Levy, 2016] model to

generate modular SAT.

• PDP is capable of adapting to

a new problem distribution.

Insights & Takeaways
Obviously, we are still far away from performing on par with
industrial solvers, but…

• The ML approach to SAT provides us with generic solution
frameworks that can adapt to new problem distributions.

• Approach B is superior to Approach A, because it enables us to
encode informative inductive biases into the model.

• Neural Relaxation is a powerful methodology to arrive at Approach
B frameworks.

• PDP serves as a generic template capable of realizing fully-neural
as well as hybrid models.

• PDP is highly parallel and further enables us to implement classical
restart via batch replication.

Important Directions Ahead

• Approaching other aspects of SAT via the ML approach, e.g.

providing proof of UNSAT.

• Incorporating other powerful classical techniques such as

backtracking into the neural framework.

• Ideally, we want a generic neural framework with a right

balance between ML components and powerful classical

techniques that is end-to-end differentiable/trainable.

Thank You!

• My co-authors:

• The paper:

• https://arxiv.org/abs/1903.01969

• The open-source code:

• https://github.com/microsoft/PDP-

Solver

Sergiy Matusevych,
Microsoft

Markus Weimer,
Microsoft

https://arxiv.org/abs/1903.01969
https://github.com/microsoft/PDP-Solver

