15/10/2021, 23:50

report

COUNT-CP, a CP constraint learner for the
holy grail 2021 challenge

Mohit Kumar, Samuel Kolb, Tias Guns

KU Leuven, Belgium

{firstname.lasthame@cs.kuleuven.be}

Abstract: We introduce the COUNT-CP constraint learner for CP problems. Count-CP is
based on the idea behind Mohit Kumar et al's COUNT-OR, a constraint learning algorithm for
personnel rostering problems: empirically finding the suitable upper and lower bounds for
relevant expressions lb <= expr <= ub . COUNT-OR learns bounds for expressions that
occur frequently in rostering problems: aggregation operations on slices of tensors. In
contrast, COUNT-CP uses a grammar over decision variables or pairs of decision variables
suitable for expressing constraints typical for CP problems. Additionally, COUNT-CP
introduces an additional step for generalizing learned models across different instance sizes.
COUNT-CP is implemented using the CPMpy constraint programming and modeling
environment.

Our proposal consists of two parts:

e Part 1: learning constraints for instances of the same size
e Part 2: learning generalized constraint models

Part 1: Learning constraints for instances of the same
size

Constraint bias

Previous work (Kumar et al.) on learning for personnel rostering focussed on learning
constraints over expressions that aggregate over various slices of a tensor, e.g.,

foreach i, j:
0 <= sum(X[i, j, :]) <=1

In this work, we consider the case of learning constraints of the following form:
lb <= expr <= ub

where expr is a numeric expression over one or two decision variables, suchas x + y or
abs(x-y) . To learn these constraints, we defined a grammar that captures expressions
frequently occurring in CP problems.

Expression grammar

We consider both unary expressions, that is expression involving one individual variable, and
binary expressions involving two variables.

file:///Users/mohitkr/Downloads/report (3).html 1/9

https://ieeexplore.ieee.org/abstract/document/8995316

15/10/2021, 23:50 report

To construct our grammar, we look at unary and binary expressions that can be expressed in
the generic CPMpy modeling language. The expressions are the same for other modeling
languages.

We consider the unary operators identity and absolute value, as well as the binary operators
addition and subtraction. Unary expressions are generated using unary operators, while
binary expressions are generated by combining both unary and binary operators. More
concretely, we have the following grammar rules:

[x, abs(x)]

def unary operators():
yield lambda x: x # identity
yield abs

[xty, X-y, y-X, /X/+/Y// /X/_/Y// /Y/_/X/]
def binary operators():
for u in unary operators():
yield lambda x, y: u(x) + u(y)
yield lambda x, y: u(x) - u(y)
yield lambda x, y: u(y) - u(x)

the unary expressions = unary operators
def generate unary expr(x):
for u in unary operators():
yield u(x)

the binary expressions = unary operators wrapped around binary
e.g. for binary x-y: x-y, abs(x-y), abs(abs(x)-abs(y))
def generate binary expr(x, y):
for b in binary operators():
for u in unary operators(): # includes identity
yield u(b(x, y))

Observe how this does not include the 'traditional' constraint biases x !'= y, X <=y, X
< vy, etc. The reason is that we have expressions that subsume those, namely
correspondingly abs(x — y) >= 1, x —y <= 0 and x — y <= -1 .Hence, the
above constraint bias (the inequalities over that grammar) can learn those and more.

One of the few unary/binary constraints it can not learnis X != ¢, for some constant ¢
which lies between (exclusive) the lower and upperbound of x . We believe it will be very
rare that a constraint model intentionally excludes one individual value, without that value
being specified as the 'input data'. Hence, it is not part of our bias.

The bias also does not include n-ary global constraints such as alldifferent() or

increasing() , however, these have decompositions into binary constraints, meaning that
we can learn the decomposed versions. Also not included are tertiary constraints such as x
+ y = z or, equivalently, boundson x + y — z for arbitrary triples. We leave it open
whether these constructs are commonly used, and how to best manage the large number of
candidates.

Finally, we also don't support element constraints like list[x] == vy ; they typically
interact between different variable matrices (e.g. list and some variables x , y), for
which we have not yet defined a grammar.

file:///Users/mohitkr/Downloads/report (3).html 2/9

15/10/2021, 23:50 report
For this challenge this simple grammar already allowed us to learn the large majority of
constraints. However, for more complicated problems, the grammar can trivially be extended
with additional unary (e.g., x*x , mod(x, 2)), binary or n-ary operators (e.g., sums over
lists). This increased expressiveness would, however, incur an additional computational cost
during learning.

Constraint learning

Our learning algorithm only makes use of positive data, that is, the given true solutions. As
all solutions have the same size, we can easily represent them as a tensor. More specifically,
let there be N examples, where each example is a list of size d , then we represent the
positive instancesasan N x d matrix.

Similarly, for N x d1 x d2 foran dl1 x d2 shaped matrix of decision variables. Without
loss of generality, we can representitasan N x d matrix, with d = d1 x d2,thatis, a
flattened matrix in which every row is an example and every column is one element of the

d1l x d2 shaped matrix of decision variables. If solutions contain multiple sets of decision
variables, we can convert theminto N x d matrix separately and concatenate these
matrices. For example, if every solution contains two sets of decision variables of size d1
and d2 , respectively, we represent the solutions by two matrices of size N x d1 and N X
d2 and concatenate them to obtainan N x d matrix where d = d1 + d2 . From now on
we assume an N x d representation of the solutions.

We will generate all possible expressions from the grammar, apply it on all possible elements
of the matrices, and compute the resulting bounds. This can be seen as a convex hull of all
possible expressions around the given solutions. This is a valid, though potentially overly
restrictive, representation of constraints which the data satisfies.

Our approach has four phases:

1. Generate and compute expressions

2. Translate bounded expressions to constraints
3. Remove implied constraints

4. Learning the objective function

1. Generate and compute expressions

Given a tensor (list, matrix, or higher dimensionality) of decision variables, we generate all
possible unary expressions, and for each expression, we apply it on each of the columns of
our corresponding N x d matrix of solutions.

For every pair of expression expr and columnindex i , we obtain alist of N values and
can easily compute the min and max values. This way, we obtain a data structure with tuples

(expr, i, 1b, ub) ,where 1b and ub are the lower and upper bounds of an
expression applied to a decision variable i across all positive examples.

Next, we do the same for binary expressions over all pairs of columns inthe N x d solution
matrix, and we compute and store the bounds of the resulting lists of values. In the resulting

file:///Users/mohitkr/Downloads/report (3).html 3/9

15/10/2021, 23:50 report
data structure we then store the bounds as (expr, (il, i2), 1lb, ub) , where il
and 12 are the indices of the two decision variables (or columns) to which the expression
was applied.

(From a technical point of view, unary index tuples (expr, i, lb, ub) are represented
as (expr, (i,), lb, ub) . This representation also allows extensions to n-ary
expressions (expr, (i1, i2, ..., in), 1lb, ub))

Currently, constraints are computed for each set of decision variables separately. For
problem type @3, this means that we do not learn binary constraints that mix the

customer and warehouse decision variables. We imposed this restriction to decrease
the computation time for our experiments, however, removing this restriction allows more
expressive constraints to be learned.

2. Translate bounded expressions to constraints

We read in the challenge data, extract from the formatTemplate the number of list/matrix
variables and their shape, as well as their lower and upper bound.

Next, we create corresponding CPMpy decision variables with corresponding domains.

On those, we can then apply the same expressions as used in step 1. CPMpy overloads
Python operators, so applying the operators results in valid CPMpy expressions and
constraints. However, for many expressions, the computed lower or upper bound is trivial: it
is equivalent to the lower or upper bound of the expression given the domains of the
variables.

To detect these trivial constraints with non-restricting bounds, we can make use of CPMpy's
mechanism to create auxiliary variables with tight domains for arbitrary expressions. Only if
the learned bounds are different from those computed by CPMpy for the generic expression,
the corresponding constraint is added to a candidate model.

Note that this does not change the set of solutions covered, it just makes it easier to inspect
the models and slightly more efficient to execute it for the solver.

3. Remove implied constraints

While we already removed constraints with trivial bounds, we can still have implied
constraints, suchas abs(x + y) >= 2 and x + y >= 2 while x and y can only take
positive values. More complex examples exist.

We consider a constraint c1 to be implied by a constraint c2 if all solutions of c2 are
also solutions of c1. Thatis, c1l constrains a subset (or equal) of c2 . Logically, we have
c2 —> cl.This meansthat not (c2 —> c1) == c¢2 and not cl can not be true. In
other words, we can use a constraint solver to search for a counter example for which c¢2
and not cl.Ifitfinds one, the cl is notimplied by c2 . If it finds no such solution, then
cl isimplied, and it can safely be removed. This will again not change the set of accepted
solutions, but it will make the learned constraint models more interpretable.

More generally, for a set of learned constraints C , we check for each one in turn whether it
is implied by the other constraints or not, and remove it if it is. The pseudo-code is as
follows:
file:///Users/mohitkr/Downloads/report (3).html 4/9

15/10/2021, 23:50 report

C [...] # list of constraints
1=20
while i < len(C):
m = Model(C[:i] + C[i+1:] + ~all(CI[il]))
if m.solve():
skip it, not implied
i+=1
else:
del CI[il

where C[:i] + C[i+1:] consists of all constraints except C[i] and ~all(C[i]) is
the negation of C[i] (even whenitis a list of constraints).

With a lazy clause generation solver like ortools CP-SAT, generating (or disproving) such
counter examples is pretty efficient.

Note that the order in which the constraints are tested for removal matters... We assume that
the grammar rules are ordered from 'simple' to 'complex’, and hence we traverse the list of
constraints from the end (more complex) to the beginning (the unary constraints, simple).

Improving this ordering of constraints through more elaborate estimates of which constraint
should be preferred over other equivalent ones could be useful.

4. Learning the objective function

We feel the challenge has a rather loose interpretation of 'objective function', given that
there are multiple solutions given and hence it does not seem to be a function that has to be
optimized.

Instead, one could see learning the objective function as an equation discovery problem:
given a solution, what equation generates the given value. Equations could be generated
using a simple grammar of n-ary expressions in CPMpy, i.e., sum, min, max . However, in
this challenge, the objective seems to be simply max in all types with objective functions
except one.

The other one, type 03 , involves weighted sums over projected variable representations.
We could add weighted sums over matching matrix dimensions, but with the limited time
available we decided to manually provide the required objective function for this problem.

Results for local learning

The following table shows the results for this local learning approach:

import pandas as pd

pd.set option("display.max rows", None)
pd.set option('precision', 2)

df = pd.read csv("merged.csv")

df = df[df.model used == 'instance level']

file:///Users/mohitkr/Downloads/report (3).html 5/9

15/10/2021, 23:50

report

df['percentage pos'] = df['percentage pos'].round(2)
df['percentage neg'] = df['percentage neg'].round(2)
df[['type', 'percentage pos', 'percentage neg']].groupby(['type']).mean()

percentage_pos percentage_neg

type
1 100.0 100.00
2 100.0 99.91
4 100.0 99.68
7 100.0 77.63
8 100.0 99.93
10 100.0 99.96
1" 100.0 100.00
13 100.0 99.50
14 100.0 100.00
15 100.0 99.95
16 100.0 100.00

Generally we see huge reduction from initial set of constraints to filtered (non-trivial, non-
implied) set of constraints. In part, the initial set of constraints could already be reduced by
pre-processing expressions in the grammar, e.g., for positive variables x and vy,
expressions x + y and abs(x + y) are equivalent and one of them can be excluded
before learning.

As per construction, our approach always satisfies all positive examples.

The last column shows the percentage of negative examples that we reject. That is, our
constraint model correctly answers 'UNSAT' when we force the decision variables to equal
the negative example.

It shows that our local constraint learning approach achieves >99% accuracy on many
constraint types, with a reasonable number of constraints in the model. The exception is
type@7 , where a limited visual inspection did not reveal to the authors what a missing

constraint could be.

Part 2: Learning generalized constraint models

Sequence bias

As mentioned earlier, our constraint learning approach can learn constraints such as
alldifferent by learning the individual constraints abs(x — y) >= 1 between pairs
of decision variables. This approach, however, does not scale to problems of different sizes
as the constraints are "hardcode" for individual pairs in the instance.

To overcome this limitation and learn constraints that are independent of the problem size,

our aim is to find index groups, groups of decision variables or pairs of variables, that share a

constraint.

file:///Users/mohitkr/Downloads/report (3).html

6/9

15/10/2021, 23:50

report

For example, alldifferent can be encoded as:

forall pairs (x[i]l, xI[j]):
abs(x[i] - x[j]) >=1

An increasing sequence can be encoded as:

forall sequential pairs (x[i], x[i+1]):
x[i+1] - x[i] >= 0

Sequence grammar

The algorithm of part 1 provides us with all unary and binary expressions. In this second
step, we group decision variables or pairs of decision variables into sequences. To learn
these constraints we use a grammar of sequence generators.

We consider the unary sequences:

e all:allvariables
e even : all variables with even indices
e 0dd : all variables with odd indices

The pairwise sequences are:

e all :all pairs of variables

e sequence : all sequential pairs of variables x[i], x[i+1]
e even : all sequential pairs with even indices

e 0dd : all sequential pairs with odd indices

Sequences can also be generated using additional background information, such as the
pairs given in the inputData of typeO1.

Generalized constraint learning

To learn generalized constraints, we first generate all sequences of variables and for every
expression we combine the lower and upper bounds of the individual expressions.

For example, for the sequence of even variables, we compute the minimal lower bound and
maximal upper bound of all entries (expr, (i,), lb, ub) -- obtained in part1-- where

i iseven. Theresultis anentry (expr, (forall even vars), lb_min, ub_max) ,
where (forall even vars) isthe generator expressionand lb_min and ub_max are
the minimal lower bound and maximal upper bound across indices.

Next, as in part 1, for each instance we filter out the trivial lower and upper bounds and look
for redundant entries. This redundancy check uses the same principle as the one in part 1,
except that we consider groups of constraints at ones: all constraints generated by a
generator.

Finally, we compare the generalized constraints across instances. If for any instance a
combination (expr, generator, _, _) has been filtered out, we do not include it in the

final model. Otherwise, we once more compute the minimal lower and upper bounds across

file:///Users/mohitkr/Downloads/report (3).html

79

15/10/2021, 23:50 report
all entries (expr, generator, lb, ub) to obtain the final generalized constraints of
the form (expr, generator, lb_min, 1lb_max). Thistime 1b_min and ub_max are
the minimal lower bound and maximal upper bound across instances.

A shortcoming of this method is that currently sequences are generated over all decision
variables. This shortcoming could be addressed by first partitioning variables into groups,
e.g., rows of a matrix, blocks of variables, diagonal elements, etc., using a suitable grammar,
and using a generator within those partitions. We believe this extension would allow us to
tackle most of the problems in this competition.

A second improvement would be the inclusion of symbolic bounds in the constraints. Instead
of using numeric constants lb and ub in the constraints 1b <= expr <= ub , we could
try to replace them with symbolic constants from the input data or from the problem size.
(This would also be helpful when implementing the partitioning described in the previous
step.)

import pandas as pd

pd.set option("display.max rows", None)

pd.set option('precision', 2)

df = pd.read csv("merged.csv")

df = df[df.model used == 'type level']

df['percentage pos'] = df['percentage pos'].round(2)

df['percentage neg'] = df['percentage neg'].round(2)

df[['type', 'percentage pos', 'percentage neg']].groupby(['type']).mean()

percentage_pos percentage_neg

type
1 100.0 100.00
2 100.0 99.85
4 100.0 96.66
7 100.0 0.00
8 100.0 98.25
10 100.0 99.96
1 100.0 0.00
13 100.0 98.34
14 100.0 100.00
15 100.0 99.16
16 100.0 100.00

The performance deteriorates very slightly when using generalised models. The exceptions
are type@7 and typell . It's possible that we are supposed to use inputData in these
cases to learn generalised models.

Note that the generalised models learned here can also be applied on the instances for
which no positive/negative examples are given.

file:///Users/mohitkr/Downloads/report (3).html

8/9

15/10/2021, 23:50 report

Conclusion

We implemented a constraint learner through an inequality-based learner over a constraint
grammar involving unary and binary expressions over decision variables. Key techniques
used are grammars, matrix operations to efficiently extract bounds, and the CPMpy
modeling environment.

Our local learning approach achieves high accuracy and automatically reduces the size of
the learned model by removing trivial and implied constraints. We also investigated
automated ways to generalize the learned constraints, with decent initial success.

Much future work remains, especially with respect to reducing the set of local constraints
further to an 'elementary' set; as well as generalizing constraints across instances of
different size.

file:///Users/mohitkr/Downloads/report (3).html 9/9

