
15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 1/9

COUNT-CP, a CP constraint learner for the
holy grail 2021 challenge

Mohit Kumar, Samuel Kolb, Tias Guns

KU Leuven, Belgium

{firstname.lastname@cs.kuleuven.be}
Abstract: We introduce the COUNT-CP constraint learner for CP problems.
Count-CP is

based on the idea behind Mohit Kumar et al's COUNT-OR, a constraint learning algorithm for

personnel rostering problems: empirically finding the suitable upper and lower bounds for

relevant expressions lb <= expr <= ub .
COUNT-OR learns bounds for expressions that

occur frequently in rostering problems: aggregation operations on slices of tensors.
In

contrast, COUNT-CP uses a grammar over decision variables or pairs of decision variables

suitable for expressing constraints typical for CP problems.
Additionally, COUNT-CP

introduces an additional step for generalizing learned models across different instance sizes.

COUNT-CP is implemented using the CPMpy constraint programming and modeling

environment.

Our proposal consists of two parts:

Part 1: learning constraints for instances of the same size

Part 2: learning generalized constraint models

Part 1: Learning constraints for instances of the same
size

Constraint bias

Previous work (Kumar et al.) on learning for personnel rostering focussed on learning

constraints over expressions that aggregate over various slices of a tensor, e.g.,

foreach i, j:

 0 <= sum(X[i, j, :]) <= 1

In this work, we consider the case of learning constraints of the following form:

lb <= expr <= ub

where expr is a numeric expression over one or two decision variables, such as x + y or

abs(x-y) .
To learn these constraints, we defined a grammar that captures expressions

frequently occurring in CP problems.

Expression grammar

We consider both unary expressions, that is expression involving one individual variable, and

binary expressions involving two variables.

https://ieeexplore.ieee.org/abstract/document/8995316

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 2/9

To construct our grammar, we look at unary and binary expressions that can be expressed in

the generic CPMpy modeling language. The expressions are the same for other modeling

languages.

We consider the unary operators identity and absolute value, as well as the binary operators

addition and subtraction.
Unary expressions are generated using unary operators, while

binary expressions are generated by combining both unary and binary operators. More

concretely, we have the following grammar rules:

Observe how this does not include the 'traditional' constraint biases x != y , x <= y , x
< y , etc. The reason is that we have expressions that subsume those, namely
correspondingly abs(x - y) >= 1 , x - y <= 0 and x - y <= -1 . Hence, the
above constraint bias (the inequalities over that grammar) can learn those and more.

One of the few unary/binary constraints it can not learn is x != c ,
for some constant c
which lies between (exclusive) the lower and upperbound of x . We believe it will be very
rare that a constraint model intentionally excludes one individual value, without that value

being specified as the 'input data'. Hence, it is not part of our bias.

The bias also does not include n-ary global constraints such as alldifferent() or

increasing() , however, these have decompositions into binary constraints, meaning that
we can learn the decomposed versions.
Also not included are tertiary constraints such as x
+ y = z or, equivalently, bounds on x + y - z for arbitrary triples. We leave it open

whether these constructs are commonly used, and how to best manage the large number of

candidates.

Finally, we also don't support element constraints like list[x] == y ; they typically
interact between different variable matrices (e.g. list and some variables x , y), for
which we have not yet defined a grammar.

In [3]: # [x, abs(x)]

def unary_operators():

 yield lambda x: x # identity

 yield abs

[x+y, x-y, y-x, |x|+|y|, |x|-|y|, |y|-|x|]

def binary_operators():

 for u in unary_operators():

 yield lambda x, y: u(x) + u(y)

 yield lambda x, y: u(x) - u(y)

 yield lambda x, y: u(y) - u(x)

the unary expressions = unary operators

def generate_unary_expr(x):

 for u in unary_operators():

 yield u(x)

the binary expressions = unary operators wrapped around binary

e.g. for binary x-y: x-y, abs(x-y), abs(abs(x)-abs(y))

def generate_binary_expr(x, y):

 for b in binary_operators():

 for u in unary_operators(): # includes identity

 yield u(b(x, y))

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 3/9

For this challenge this simple grammar already allowed us to learn the large majority of

constraints. However, for more complicated problems, the grammar can trivially be extended

with additional unary (e.g., x*x , mod(x, 2)), binary or n-ary operators (e.g., sums over
lists). This increased expressiveness would, however, incur an additional computational cost

during learning.

Constraint learning

Our learning algorithm only makes use of positive data, that is, the given true solutions. As

all solutions have the same size, we can easily represent them as a tensor. More specifically,

let there be N examples, where each example is a list of size d , then we represent the
positive instances as an N x d matrix.

Similarly, for N x d1 x d2 for an d1 x d2 shaped matrix of decision variables. Without

loss of generality, we can represent it as an N x d matrix, with d = d1 x d2 , that is, a
flattened matrix in which every row is an example and every column is one element of the

d1 x d2 shaped matrix of decision variables.
If solutions contain multiple sets of decision

variables, we can convert them into N x d matrix separately and concatenate these

matrices.
For example, if every solution contains two sets of decision variables of size d1
and d2 , respectively, we represent the solutions by two matrices of size N x d1 and N x
d2 and concatenate them to obtain an N x d matrix where d = d1 + d2 .
From now on

we assume an N x d representation of the solutions.

We will generate all possible expressions from the grammar, apply it on all possible elements

of the matrices, and compute the resulting bounds. This can be seen as a convex hull of all

possible expressions around the given solutions. This is a valid, though potentially overly

restrictive, representation of constraints which the data satisfies.

Our approach has four phases:

1. Generate and compute expressions

2. Translate bounded expressions to constraints

3. Remove implied constraints

4. Learning the objective function

1. Generate and compute expressions

Given a tensor (list, matrix, or higher dimensionality) of decision variables, we generate all

possible unary expressions, and for each expression, we apply it on each of the columns of

our corresponding N x d matrix of solutions.

For every pair of expression expr and column index i , we obtain a list of N values and

can easily compute the min and max values.
This way, we obtain a data structure with tuples

(expr, i, lb, ub) , where lb and ub are the lower and upper bounds of an

expression applied to a decision variable i across all positive examples.

Next, we do the same for binary expressions over all pairs of columns in the N x d solution

matrix, and we compute and store the bounds of the resulting lists of values.
In the resulting

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 4/9

data structure we then store the bounds as (expr, (i1, i2), lb, ub) , where i1
and i2 are the indices of the two decision variables (or columns) to which the expression

was applied.

(From a technical point of view, unary index tuples (expr, i, lb, ub) are represented

as (expr, (i,), lb, ub) . This representation also allows extensions to n-ary
expressions (expr, (i1, i2, ..., in), lb, ub) .)

Currently, constraints are computed for each set of decision variables separately.
For

problem type 03 , this means that we do not learn binary constraints that mix the
customer and warehouse decision variables.
We imposed this restriction to decrease

the computation time for our experiments, however, removing this restriction allows more

expressive constraints to be learned.

2. Translate bounded expressions to constraints

We read in the challenge data, extract from the formatTemplate the number of list/matrix

variables and their shape, as well as their lower and upper bound.

Next, we create corresponding CPMpy decision variables with corresponding domains.

On those, we can then apply the same expressions as used in step 1. CPMpy overloads

Python operators, so applying the operators results in valid CPMpy expressions and

constraints. However, for many expressions, the computed lower or upper bound is trivial: it

is equivalent to the lower or upper bound of the expression given the domains of the

variables.

To detect these trivial constraints with non-restricting bounds, we can make use of CPMpy's

mechanism to create auxiliary variables with tight domains for arbitrary expressions. Only if

the learned bounds are different from those computed by CPMpy for the generic expression,

the corresponding constraint is added to a candidate model.

Note that this does not change the set of solutions covered, it just makes it easier to inspect

the models and slightly more efficient to execute it for the solver.

3. Remove implied constraints

While we already removed constraints with trivial bounds, we can still have implied

constraints, such as abs(x + y) >= 2 and x + y >= 2 while x and y can only take

positive values. More complex examples exist.

We consider a constraint c1 to be implied by a constraint c2 if all solutions of c2 are

also solutions of c1. That is, c1 constrains a subset (or equal) of c2 . Logically, we have
c2 -> c1 . This means that not (c2 -> c1) == c2 and not c1 can not be true. In

other words, we can use a constraint solver to search for a counter example for which c2
and not c1 . If it finds one, the c1 is not implied by c2 . If it finds no such solution, then
c1 is implied, and it can safely be removed. This will again not change the set of accepted

solutions, but it will make the learned constraint models more interpretable.

More generally, for a set of learned constraints C , we check for each one in turn whether it
is implied by the other constraints or not, and remove it if it is. The pseudo-code is as

follows:

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 5/9

C = [...] # list of constraints

i = 0

while i < len(C):

 m = Model(C[:i] + C[i+1:] + ~all(C[i]))

 if m.solve():

 # skip it, not implied

 i += 1
 else:

 del C[i]

where C[:i] + C[i+1:] consists of all constraints except C[i] and ~all(C[i]) is

the negation of C[i] (even when it is a list of constraints).

With a lazy clause generation solver like ortools CP-SAT, generating (or disproving) such

counter examples is pretty efficient.

Note that the order in which the constraints are tested for removal matters... We assume that

the grammar rules are ordered from 'simple' to 'complex', and hence we traverse the list of

constraints from the end (more complex) to the beginning (the unary constraints, simple).

Improving this ordering of constraints through more elaborate estimates of which constraint

should be preferred over other equivalent ones could be useful.

4. Learning the objective function

We feel the challenge has a rather loose interpretation of 'objective function', given that

there are multiple solutions given and hence it does not seem to be a function that has to be

optimized.

Instead, one could see learning the objective function as an equation discovery problem:

given a solution, what equation generates the given value.
Equations could be generated

using a simple grammar of n-ary expressions in CPMpy, i.e., sum, min, max .
However, in
this challenge, the objective seems to be simply max in all types with objective functions

except one.

The other one, type 03 , involves weighted sums over projected variable representations.

We could add weighted sums over matching matrix dimensions, but with the limited time

available we decided to manually provide the required objective function for this problem.

Results for local learning

The following table shows the results for this local learning approach:

In [5]: import pandas as pd

pd.set_option("display.max_rows", None)

pd.set_option('precision', 2)

df = pd.read_csv("merged.csv")

df = df[df.model_used == 'instance level']

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 6/9

percentage_pos percentage_neg

type

1 100.0 100.00

2 100.0 99.91

4 100.0 99.68

7 100.0 77.63

8 100.0 99.93

10 100.0 99.96

11 100.0 100.00

13 100.0 99.50

14 100.0 100.00

15 100.0 99.95

16 100.0 100.00

Generally we see huge reduction from initial set of constraints to filtered (non-trivial, non-

implied) set of constraints.
In part, the initial set of constraints could already be reduced by

pre-processing expressions in the grammar, e.g., for positive variables x and y ,
expressions x + y and abs(x + y) are equivalent and one of them can be excluded

before learning.

As per construction, our approach always satisfies all positive examples.

The last column shows the percentage of negative examples that we reject. That is, our

constraint model correctly answers 'UNSAT' when we force the decision variables to equal

the negative example.

It shows that our local constraint learning approach achieves >99% accuracy on many

constraint types, with a reasonable number of constraints in the model. The exception is

type07 , where a limited visual inspection did not reveal to the authors what a missing

constraint could be.

Part 2: Learning generalized constraint models

Sequence bias

As mentioned earlier, our constraint learning approach can learn constraints such as

alldifferent by learning the individual constraints abs(x - y) >= 1 between pairs

of decision variables. This approach, however, does not scale to problems of different sizes

as the constraints are "hardcode" for individual pairs in the instance.

To overcome this limitation and learn constraints that are independent of the problem size,

our aim is to find index groups, groups of decision variables or pairs of variables, that share a

constraint.

df['percentage_pos'] = df['percentage_pos'].round(2)

df['percentage_neg'] = df['percentage_neg'].round(2)

df[['type','percentage_pos', 'percentage_neg']].groupby(['type']).mean()

Out[5]:

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 7/9

For example, alldifferent can be encoded as:

forall pairs (x[i], x[j]):

 abs(x[i] - x[j]) >= 1

An increasing sequence can be encoded as:

forall sequential pairs (x[i], x[i+1]):

 x[i+1] - x[i] >= 0

Sequence grammar

The algorithm of part 1 provides us with all unary and binary expressions.
In this second

step, we group decision variables or pairs of decision variables into sequences.
To learn

these constraints we use a grammar of sequence generators.

We consider the unary sequences:

all : all variables
even : all variables with even indices
odd : all variables with odd indices

The pairwise sequences are:

all : all pairs of variables
sequence : all sequential pairs of variables x[i], x[i+1]
even : all sequential pairs with even indices
odd : all sequential pairs with odd indices

Sequences can also be generated using additional background information, such as the

pairs given in the inputData of type01.

Generalized constraint learning

To learn generalized constraints, we first generate all sequences of variables and for every

expression we combine the lower and upper bounds of the individual expressions.

For example, for the sequence of even variables, we compute the minimal lower bound and

maximal upper bound of all entries (expr, (i,), lb, ub) -- obtained in part 1 -- where

i is even.
The result is an entry (expr, (forall even vars), lb_min, ub_max) ,
where (forall even vars) is the generator expression and lb_min and ub_max are

the minimal lower bound and maximal upper bound across indices.

Next, as in part 1, for each instance we filter out the trivial lower and upper bounds and look

for redundant entries.
This redundancy check uses the same principle as the one in part 1,

except that we consider groups of constraints at ones: all constraints generated by a

generator.

Finally, we compare the generalized constraints across instances. If for any instance a

combination (expr, generator, _, _) has been filtered out, we do not include it in the

final model.
Otherwise, we once more compute the minimal lower and upper bounds across

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 8/9

all entries (expr, generator, lb, ub) to obtain the final generalized constraints of

the form (expr, generator, lb_min, lb_max). This time lb_min and ub_max are

the minimal lower bound and maximal upper bound across instances.

A shortcoming of this method is that currently sequences are generated over all decision

variables.
This shortcoming could be addressed by first partitioning variables into groups,

e.g., rows of a matrix, blocks of variables, diagonal elements, etc., using a suitable grammar,

and using a generator within those partitions.
We believe this extension would allow us to

tackle most of the problems in this competition.

A second improvement would be the inclusion of symbolic bounds in the constraints.
Instead

of using numeric constants lb and ub in the constraints lb <= expr <= ub , we could
try to replace them with symbolic constants from the input data or from the problem size.

(This would also be helpful when implementing the partitioning described in the previous

step.)

percentage_pos percentage_neg

type

1 100.0 100.00

2 100.0 99.85

4 100.0 96.66

7 100.0 0.00

8 100.0 98.25

10 100.0 99.96

11 100.0 0.00

13 100.0 98.34

14 100.0 100.00

15 100.0 99.16

16 100.0 100.00

The performance deteriorates very slightly when using generalised models. The exceptions

are type07 and type11 .
It's possible that we are supposed to use inputData in these

cases to learn generalised models.

Note that the generalised models learned here can also be applied on the instances for

which no positive/negative examples are given.

In [6]: import pandas as pd

pd.set_option("display.max_rows", None)

pd.set_option('precision', 2)

df = pd.read_csv("merged.csv")

df = df[df.model_used == 'type level']

df['percentage_pos'] = df['percentage_pos'].round(2)

df['percentage_neg'] = df['percentage_neg'].round(2)

df[['type','percentage_pos', 'percentage_neg']].groupby(['type']).mean()

Out[6]:

15/10/2021, 23:50 report

file:///Users/mohitkr/Downloads/report (3).html 9/9

Conclusion
We implemented a constraint learner through an inequality-based learner over a constraint

grammar involving unary and binary expressions over decision variables.
Key techniques

used are grammars, matrix operations to efficiently extract bounds, and the CPMpy

modeling environment.

Our local learning approach achieves high accuracy and automatically reduces the size of

the learned model by removing trivial and implied constraints.
We also investigated

automated ways to generalize the learned constraints, with decent initial success.

Much future work remains, especially with respect to reducing the set of local constraints

further to an 'elementary' set; as well as generalizing constraints across instances of

different size.

