
Integrating CP

with ML and explanations

The Sudoku Assistant App (and CPMpy)

Prof. Tias Guns <tias.guns@kuleuven.be> @TiasGuns
Maxime Mulamba
Milan Pesa
Ignace Bleukx
Emilio Gamba
Bart Bogaerts
Senne Berden

mailto:tias.guns@kuleuven.be

AI

Decision variables
Constraints
Objective function

 Model + Solve

General-purpose constraint solving

 Model + Solve

Constraint solving paradigm

Rich research on
modeling languages, automatic transformations,
solver independence, modelling tools

Tools: MiniZinc, Essence’, CPMpy

Rich research on
efficient solvers, (global) constraint propagators,
automatic search, algorithm configuration, ...

Tools: OrTools, Gecode, Gurobi, Z3, ...

 Model + Solve

Wider view

 Model + Solve

Wider view: integration

Visualisations
Machine Learning
predictions

Interactive
solving

Explainability

Master-
subproblem
algorithms ...

Algorithm
configuration

Perception-based Constraint Solving:
a demo application

https://sudoku-assistant.cs.kuleuven.be

Sudoku Assistant: usage demo

1) Recognizing the Sudoku digits

 Cut into 81 pieces (introduces additional noise)

 Predict 1-9 or empty (printed and handwritten, robust to borders and markings)

 Custom but standard ML

2) solving the sudoku

Rules of Sudoku (source: sudoku.com)

Decision variables
Constraints
Objective function

 Model + Solve

2) solving the sudoku

Model =

- Variables, with a domain

- Constraints over variables

Model.solve()

Decision variables
Constraints
Objective function

 Model

- grid[i,j] :: {1..9} for i,j in {1..9}

- alldifferent(grid[i,:]) for i in {1..9} – rows
alldifferent(grid[:,j]) for j in {1..9} – columns
alldifferent(square(grid, k,l)) for k,l in {1..3} – squares

 grid[i,j] == given[i,j] if given[i,j] not empty for i,j in {1..9}

2) solving the sudoku Decision variables
Constraints
Objective function

 Model

CPMpy:

 Open source

 Python/Numpy based

 Direct solver access

Supported solvers:
 ORTools (CP)

 Gurobi, Exact (MIP)

 Z3 (SMT)

 PySAT (SAT)

 PySDD (knowledge comp)

 More to come… (SCIP, CPOpt)

https://github.com/CPMpy/cpmpy

Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naïve)

Pre-trained neural network Solving

Perception-based constraint solving

Pre-trained neural network Solving

What is going on?

 Each cell predicts the maximum likelihood value:

 But you need all 81 predictions (one for each given cell), it is a multi-output problem:
together this is the ‘maximum likelihood’ interpretation

 If = False: no solution, interpretation is wrong...

Perception-based constraint solving

What about the next most likely interpretation?

Perception-based constraint solving

What about the next most likely interpretation?

 Treat prediction as joint inference problem:

 This is the constrained ‘maximum likelihood’ interpretation

 => Structured output prediction

 Used e.g. in NLP: [Punyakanok, COLING04]

Pre-trained neural network Solving

Perception-based constraint solving
X

ij

Pre-trained neural network

Can we use a constraint solver for that?

 Log-likelihood trick:

 constant

Can do even better!

Are we using all available information?

A sudoku puzzle has to have one unique solution

→ not in current constraint model: a 2nd order constraint

But we can add cutting planes!
if the joint max likelihood image interpretation has multiple solutions:
forbid (nogood/cutting plane) and find next most likely one!

Pre-trained neural network

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

hybrid2

hybrid1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network

Sudoku Assistant demo, continued

Show solution?

Trivial for CP system (subsecond),

Boring and demotivating for user?

In general: human-aware AI &
AI assistants:

 Support users in decision making
 Respect human agency
 Provide explanations and learning opportunities

Constraint solving is more than mathematical abstractions...

Bigger picture

Bigger picture

 Learning implicit user preferences

 Learning from the environment

Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

https://people.cs.kuleuven.be/~tias.guns/chat-opt.html Visitors welcome!

Stepwise Explanation for
Constraint Satisfaction
Problems

Bogaerts, Bart, Emilio Gamba, and Tias Guns. "A framework for step-wise
explaining how to solve constraint satisfaction problems." Artificial Intelligence
300 (2021)

Help, I’m stuck:

What would a solver do?

• User may not understand all
derivations

• Or wants to learn from it
2

2

2

8
6

“Explain in a human-understandable way how
to solve constraint satisfaction problems”

Explanations for a SAT problem

Ex. 2019 Holy Grail Challenge (E. Freuder)

Logic Grid Puzzles (aka Zebra/Einstein puzzles)
 Parse puzzles and translate into CSP
 Solve CSP automatically
 Explain in a human-understandable way how to

solve this puzzle

Explain 1 variable from maximal consequence

2

2

2

8

6

Explanation step
Let & S’ => be one explanation step.

 = a subset of previously derived facts E
(Sudoku) Given and derived digits in the grid

S’ = a minimal subset of constraints S such that E’ & S’ => n
(Sudoku) Alldifferent column, row, box constraints

 = a newly derived fact (from the solution)

2

2

2

8
6

n

n

E’

E’

How? MUS(¬ n & E & S) is a valid explanation step

UNSAT set of constraints

= Need for an explanation of UNSAT

1. Identify conflicting constraints as explanation for
UNSAT
→ Extract Minimum Unsatisfiable Subset (MUS)

a.k.a Irreducible Inconsistent Subsystem (IIS)

2. Identify Maximal Satisfiable Subset (MSS)

3. “Correct” the infeasibility in the model
→ Extract Minimum Correction Subsets (MCS)
Complement of some MSS, removal/correction leads to
a satisfiable subset

MUS

Constraints

Explaining UNSAT with MUSes

1. Some solvers provide an implementation for extracting unsatisfiable cores as
explanations of UNSAT.

2. Deletion-based Minimal unsatisfiable subsets
 Iterate over constraints
 Delete constraints if removing them leaves the model UNSAT

• assumptions

1

2

Joao Marques-Silva.
Minimal Unsatisfiability:
Models, Algorithms and
Applications. ISMVL 2010.
pp. 9-14

Methods

examples/tutorial_ijcai22/3_musx.ipynb

Example of MUS extraction

https://github.com/CPMpy/cpmpy/blob/master/examples/tutorial_ijcai22/3_musx.ipynb

X_best = None
for in sol-to-explain:

 X = MUS(~ & & S)
 if f(X) < f(X_best):
 X_best = X
return X_best

The best/easiest explanation step...
• Let f(S) be a cost function that quantifies how good (e.g. easy to understand)

• an explanation step is.

Simple MUS-based algo:

2

2

2

8
6

sol-to-explain = propagate(& S) \ E

n
n E

E

MUS gives no guarantees on quality, only subset minimal (SMUS)

The best/easiest explanation step...
• Let f(S) be a cost function that quantifies how good (e.g. easy to understand)

• an explanation step is.

2

2

2

8
6

sol-to-explain = propagate(E & S) \ E

c = exactly-one({~n|n ∈ sol-to-explain}),

return OCUS(n|n ∈ sol-to-explain}& S & E &{~,f, c)

Explain 1 step with OCUS

OCUS(

S

Grow(S, T)

ℋ

Implicit hitting-set algorithm

OUS extraction
examples/tutorial_ijcai22/5_ocus_explan
ations.ipynb

https://github.com/CPMpy/cpmpy/blob/master/examples/tutorial_ijcai22/5_ocus_explanations.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/tutorial_ijcai22/5_ocus_explanations.ipynb

Intelligible hints:

- The Constraint Solver searches for
the Optimal Unsatisfiable Subset
(OUS) for the negation of each value
to be assigned.

- Computing this over all empty cells
is computationally challenging.

- A cost function estimates the
complexity of each subset, which
allows the app to provide the
easiest one at each step

Stepwise Explanation for
Constraint Satisfaction
Problems

Gamba, Emilio. "Efficiently Explaining CSPs with
Unsatisfiable Subset Optimization." IJCAI. 2021

Sudoku Assistant demo, continued

The changing role of solvers
Holy Grail: user specifies, solver solves [Freuder,1997]

I think we reached it… MiniZinc, Essence

• “Beyond NP” → Constraint Solver as an oracle

• Use CP solver to solve subproblem of larger algorithm

• Iteratively build-up and solve a problem until failure

• Integrate neural network predictions (structured output prediction)

• Generate proofs, explanations, or counterfactual examples, ...

[Freuder,1997] Freuder, Eugene C. "In pursuit of the holy grail." Constraints 2.1 (1997): 57-61.

What would the ideal Constraint Solving system be?

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
 => solver independent and multi-solver

 Easy integration with Machine Learning libraries
 => Python and numpy arrays

Integrated solving

What would the ideal Constraint Solving system be?

 Efficient repeated solving
• => Incremental

 Use CP/SAT/MIP or any combination
 => solver independent and multi-solver

 Easy integration with Machine Learning libraries
 => Python and numpy arrays

Conversational Human-Aware Technology for Optimisation

Design

• No rewriting!

• Like a parser

CPMpy
(user code)

Model
 constraints:

 expression tree
 objective:

 expression tree

creates

Solver Interface

CPM_ortools

CPM_pysat

CPM_gurobi

CPM_pysat

CPM_minizinc

CPM_pySDD

CPM_z3

expressions/

solvers/

Only 1-to-1
mapping of
supported
expressions

Hardest part

transformations/

Transformations (overview)

Implementation: integration

Frontend:
 React-native
 Only displays results

Backend:
 FastAPI (Python)
 NN Service (PyTorch)
 Solver Service (CPMpy)
 Preloading, caching,

hyperparameter optimisation...

Responsiveness?

Avg ~1.6 s (dev 3.2s)Avg ~0.1 s Avg ~0.9 s (dev 1.2s)

Algorithm Configuration

Responsiveness?

Avg ~1.6 s (dev 3.2s)

NOT TUNED

Avg ~0.1 s Avg ~0.9 s (dev 1.2s)

TUNED
(was much more)

Other relevant topics:

 Can we integrate instance-specific algorithm configuration?
 When to use which solver/transformations?
 Can we learn explanation preferences?

 Can we learn the constraints from data?
 Can we train an ML model based on the quality after

solving (decision-focussed learning)?
 Can we explain across the CP & ML model?
 ...

Conclusion

 Model + Solve

Wider view: integration

Visualisations
Machine Learning
predictions

Interactive
solving

Explainability

Master-
subproblem
algorithms ...

Algorithm
configuration

Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction

Needed all of:

 Easy integration with Machine Learning libraries
 => Python and numpy arrays

 Efficient repeated solving
 => Incremental

 Use CP/SAT/MIP or any combination
 => solver independent and multi-solver

 Also parameter tuning, visualisations, web service deployment, etc

Sudoku Assistant
 as integration example

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 48
	Slide 50
	Slide 51
	Slide 52
	Slide 54
	Slide 55
	Slide 56
	Slide 58
	Slide 59
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

