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General-purpose constraint solving
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Constraint solving paradigm

Model + Solve

Rich research on Rich research on
modeling languages, automatic transformations, efficient solvers, (global) constraint propagators,
solver independence, modelling tools automatic search, algorithm configuration, ...

Tools: MiniZinc, Essence’, CPMpy Tools: OrTools, Gecode, Gurobi, Z3, ...



Wider view




Wider view: integration
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Sudoku Assistant: usage demo




1) Recognizing the Sudoku digits
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* Cutinto 81 pieces (introduces additional noise)

* Predict 1-9 or empty (printed and handwritten, robust to borders and markings)

* Custom but standard ML



2) solving the sudoku

Rules of Sudoku (source: sudoku.com)

. Sudoku Rule N2 1: Use Numbers 1-9

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” {(made up of 3
% 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9,
without repeating any numbers within the row, column or square. Does it sound complicated? As you
can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces

already filled in; the more spaces filled in, the easier the game - the more difficult Sudoku puzzles

have very few spaces that are already filled in.
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Model

2) solving the sudoku Desision e

~ Objective function

Model =
- Variables, with a domain - grid[i,j] :: {1..9} for i,j in {1..9}

- Constraints over variables - alldifferent(grid[i,:]) foriin {1..9}
alldifferent(grid[:,j]) forjin {1..9}
alldifferent(square(grid, k,1)) for k,l in {1..3}

grid[i,j] == givenli,j] if given[i,j] not empty fori,jin {1..9}

Sudoku Rule N¢ 1: Use Numbers 1-9

M Od el SO Ive () Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” (made up of 3
) % 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9,

without repeating any numbers within the row, column or square. Does it sound complicated? As you

can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces

already filled in; the more spaces filled in, the easier the game - the more difficult Sudoku puzzles



2) solving the sudoku
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Model

Decision variables
Constraints —
 Objective function

model = Model()

# Variables
puzzle = intvar(l, 9, shape=given.shape, name="puzzle")

# Constraints on rows and columns
model += [AllDifferent(row) for row in puzzle]
model += [AllDifferent(col) for col in puzzle.T]

# Constraints on blocks
for i in range(0,9, 3):
for j in range(0,9, 3):
model += AllDifferent(puzzle[i:i+3, j:j+3])

# Constraints on values (cells that are not empty)
model += (puzzle[given'!=e] == given[given!=e])

model.solve()



https://github.com/CPMpy/cpmpy

D MNC R @a readthedocs.io

# » CPMpy: Constraint Programming and Modeling in Python ) Edit on GitHub

# CPMpy

CPMpy: Constraint Programming and Modeling in
Python
CPMpy:

* Open source

CPMpy is a Constraint Programming and Modeling library in Python, based on numpy, with direct
solver access.

Constraint Programming is a methodology for solving combinatorial optimisation problems like
assignment problems or covering, packing and scheduling problems. Problems that require

searching over discrete decision variables. L4 Python/N u m py based

CPMpy allows to model search problems in a high-level manner, by defining decision variables and

constraints and an objective over them (similar to MiniZinc and Essence'). You can freely use numpy [ J D i reCt Solver acceSS

functions and indexing while doing so. This model is then automatically translated to state-of-the-
art solver like or-tools, which then compute the optimal answer.

Source code and bug reports at https:/github.com/CPMpy/cpmpy S u p po rted SO I Ve rS :
Getting started:
«  ORTools (CP)
« Installation instructions
ey + Gurobi, Exact (MIP)
«  Z3(SMT)
«  PySAT (SAT)
+ Obtaining multiple solutions
« UnSAT core extraction with assumption variables L PySDD (knOWIGdge Comp)

« How to debug

« Behind the scenes: CPMpy's pipeline ° More to come... (SCIP’ CPOpt)

API documentation:

+ More examples

User Documentation:

« Setting solver paramete

s and hyperparameter search

« Expressions | epmpy.expressions |
« Model ( cpmpy.Model )
« Solver interfaces ( cpmpy.solvers )

« Expression transformations ( cpmpy. transformations )




Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naive)
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Perception-based constraint solving
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What is going on?

. Each cell predicts the maximum likelihood value:
?jij — arg 1max P(ygj — k|X@3)

. But you need all 81 predictions (one for each given cell), it is a multi-output problem:
together this is the ‘maximum likelihood’ interpretation

. If sudoku(y) = False: no solution, interpretation is wrong...



Perception-based constraint solving
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What about the next most likely interpretation?



Perception-based constraint solving
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What about the next most likely interpretation?

. Treat prediction as joint inference problem:
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Solving

y =arg max | | P(yi; = k| X;;) s.t. sudoku(y)

v
. This is the constrained ‘maximum likelihood’ interpretation
=> Structured output prediction

Used e.g. in NLP: [Punyakanok, COLING04]




Perception-based constraint solving
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Can we use a constraint solver for that?

y = arg ma,XH P(y;; = k| X;;) s.t. sudoku(y)
]

* Log-likelihood trick:

min Z Z —log(Ps(yi; = k| Xij)) * 1[s;; = k] s.t. sudoku(g)

(i.71e ke
;L.-:ff-n Fi 5] constant




Can do even better!

Are we using all available information?

A sudoku puzzle has to have one unigue solution

— not in current constraint model: a 2" order constraint
argmin f(X)
X

subjectto C(X)
. X = X £ XL 000
But we can add cutting planes!

iIf the joint max likelihood image interpretation has multiple solutions:
forbid (nogood/cutting plane) and find next most likely one!
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Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities
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LR 6D B - > (GBI
.Y = e FH S
{ ¢ Convolution + Max pool layer /‘ﬂ
' connected | | P9 |
: layer
Pre-trained neural network
accuracy failure rate time
img cell grid grid average (s)
baseline 94.75% 15.51% 14.67% 84.43% 0.01
hybrid1 99.69% 99.38% 92.33% 0% 0.79
hybrid2 99.72% 99.44% 92.93% 0% 0.83

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]



Sudoku Assistant demo, continued
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Show solution?

Trivial for CP system (subsecond),
Boring and demotivating for user?

In general: human-aware Al &
Al assistants:

* Support users in decision making
* Respect human agency

* Provide explanations and learning opportunities



Constraint solving is more than mathematical abstractions...
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Bigger picture

y 2



Bigger picture

* Learning implicit user preferences

Learning from the environment @




Bigger picture

* Learning implicit user preferences
* Learning from the environment

* EXxplaining constraint solving




Bigger picture

Learning implicit user preferences
Learning from the environment
Explaining constraint solving

Stateful interaction




CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Extablishend by the Eurcpeas Co

[ Towards co-creation of constraint optimisation solutions ]

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

.
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s
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https://people.cs.kuleuven.be/~tias.guns/chat-opt.html \/'\s'\tofst.\.'y ------
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g 1 > | Stepwise Explanation for
3 7 8 Constraint Satisfaction
8 29 6 Problems
4 9 T
1 2 8
1 8 2
9 8 5 3
3 4
5 2 6 1

Bogaerts, Bart, Emilio Gamba, and Tias Guns. "A framework for step-wise
explaining how to solve constraint satisfaction problems." Artificial Intelligence
300 (2021)



Help, I'm stuck:

2 5
9 7 3
2 9 6
_________ e
2 4 9
7
6 9 1
......... e
8 4 1
6 3 8
6 8




What would a solver do?

]2 5 |
9 | | 7 3
* User may not understand all B I 5 IS SO S
derivations ‘ T
. 6 9 | | 1
* Or wants to learn from it TN P
6 |3|] | | 8
21 J| | 6 8 |

“Explain in a human-understandable way how
to solve constraint satisfaction problems”




Explanations for a SAT problem

Ex. 2019 Holy Grail Challenge (E. Freuder)

Logic Grid Puzzles (aka Zebra/Einstein puzzles)
* Parse puzzles and translate into CSP
 Solve CSP automatically

 Explain in a human-understandable way how to
solve this puzzle



Explain 1 variable from maximal consequence

2 5
9 7 3
2 9 6
O +-------_--
2 4 9
7
6 9 1
+---------- +--------
8 4 1
6 |3 8
2 6 8




Explanation step

Let B &

Si

=> [l be one explanation step.

E’ = a subset of previously derived facts E
(Sudoku) Given and derived digits in the grid

El= a minimal subset of constraints S such that E'& S’ =>n
(Sudoku) Alldifferent column, row, box constraints

A -, newly derived fact (from the solution)

How? MUS(-n & E & S) is a valid explanation step



UNSAT set of constraints

= Need for an explanation of UNSAT

1. ldentify conflicting constraints as explanation for
UNSAT

— Extract Minimum Unsatisfiable Subset (MUS)
a.k.a Irreducible Inconsistent Subsystem (lIS)

Constraints



Explaining UNSAT with MUSes

Methods

1.

Some solvers provide an implementation for extracting unsatisfiable cores as

explanations of UNSAT.

Deletion-based Minimal unsatisfiable subsets

= |terate over constraints

= Delete constraints if removing them leaves the model UNSAT

def mus({constraints):
m = Model{constraints)

assert -m.solve(), "MUS: model must be UNSAT"

core = m.get_core() # or all constraints
i=0
while i < len(core):

subcore = core[:i] + core[i+l:] # check 1f all but i1 makes core SAT

if Model(subcore).solve():

—

i+=1 # removing it makes it SAT, must keep

else:
core = subcore # overwrite core,

return core

so corefi] is next one

1

Joao Marques-Silva.
Minimal Unsatisfiability:
Models, Algorithms and
Applications. ISMVL 2010.
pp. 9-14



Example of MUS extraction

examples/tutorial ijcai22/3 _musx.ipynb



https://github.com/CPMpy/cpmpy/blob/master/examples/tutorial_ijcai22/3_musx.ipynb

The best/easiest explanation step...

* Let f(S) be a cost function that quantifies how good (e.g. easy to understand)
* an explanation step is.

Simple MUS-based algo:

N 5 |
sol-to-explain = propagate( E s|s]) \ E 9 ) I o I7 g
X best = None “ T """"" T; """ .
o j ~to- in: 7
for. in sol-to-explain: . of | | .
x = vus (-l <E sls]) ST T
1f £(X) < £(X best): CHEN | 8
X best = X L [ 5

return X best

MUS gives no guarantees on quality, only subset minimal (SMUS)




The best/easiest explanation step...

* Let f(S) be a cost function that quantifies how good (e.g. easy to understand)

| 2 5 |
9 | | 7 3
2| | 9 | 6
R T L S,
2 | | 4 9
| 7 |
6 9 | | 1
L +----m- -
8 | 4 | 1
6 |31 ] | 8
2 | 6 8 |




Implicit hitting-set algorithm

Input & OCUS( S& E & -n)

| Grow(S, T) .
el Y

| SAT Solver Cost-Optimal-hittingset

s s
UNSAT

Optimal Constrained-US

>




OUS extraction

examples/tutorial _ijcai22/5 ocus _explan
ations.ipynb



https://github.com/CPMpy/cpmpy/blob/master/examples/tutorial_ijcai22/5_ocus_explanations.ipynb
https://github.com/CPMpy/cpmpy/blob/master/examples/tutorial_ijcai22/5_ocus_explanations.ipynb

6 1 2
3 7 8
8 2 9 6
4 9 1
1 2 8
1 8 2
9 8 5 | 3
3 4
S 2 6 1

Stepwise Explanation for
Constraint Satisfaction
Problems

Intelligible hints:

The Constraint Solver searches for
the Optimal Unsatisfiable Subset
(OUS) for the negation of each value
to be assigned.

Computing this over all empty cells
iIs computationally challenging.

A cost function estimates the
complexity of each subset, which
allows the app to provide the
easiest one at each step

Gamba, Emilio. "Efficiently Explaining CSPs with
Unsatisfiable Subset Optimization." [JCAI. 2021



Sudoku Assistant demo, continued
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The changing role of solvers

Holy Grail: user specifies, solver solves [Freuder,1997]
| think we reached it... MiniZinc, Essence

“Beyond NP” — Constraint Solver as an oracle

* Use CP solver to solve subproblem of larger algorithm

* |teratively build-up and solve a problem until failure

* Integrate neural network predictions (structured output prediction)
* Generate proofs, explanations, or counterfactual examples, ...

[Freuder,1997] Freuder, Eugene C. "In pursuit of the holy grail." Constraints 2.1 (1997): 57-61.



Integrated solving @"\

What would the ideal Constraint Solving system be?

® Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® FEasy integration with Machine Learning libraries
=> Python and numpy arrays



Conversational Human-Aware Technology for Optimisation @ k\

53]

®,
-

2)

What would the ideal Constraint Solving system be?

D MNC R @a readthedocs.io

# » CPMpy: Constraint Programming and Modeling in Python

® Efficient repeated solving

* => Incremental CPMpy: Constraint Programming

Python

CPMpy is a Constraint Programming and Modeling library in Py

® Use CP/SAT/MIP or any combinat

=> solver independent and multi-solv

solver access.
Constraint Programming is a methodology for solving combinat
assignment problems or covering, packing and scheduling probl

searching over discrete decision variables.

CPMpy allows to model search problems in a high-level manner

® FEasy integration with Machine Les
=> Python and numpy arrays

constraints and an objective over them (similar to MiniZinc and

functions and indexing while doing so. This model is then auton
art solver like or-tools, which then compute the optimal answer
Source code and bug reports at https:/github.com/CPMpy/cpr

Getting started:

« Installation instructions

ith Constraint Progr.

ming and CPMpy




Design

CPMpy
(user code)

creates

<)

expressions/ Hardest part

* No rewriting!
* Like a parser

|
|
|
|
transformations/ i
:
|
|
|

supported °
expressions



Transformations (overview)
( model )

Y
[toplevel_list()) [EP lang (MiniZinc)J

[decomposetin_tree()} - h[simplify_bool()jif— - b[ SMT (Z3) j

v -~
(push_down_negation()] (‘ BDD (PySDD) ]
v
simplify_bool()
(sopttty 3o010)
Y
[ flatten() } - - —b[only_bv_implies()} - >[ SAT (PySAT) ]

[reify_r:write ()]

[only_num:xpr_eq()} - P[only_bv_implies()} - { CP (OR-Tools) J

A4
[ linearize() ]

(only_posivtive_bv()} —>[ ILP (Gurobi,Exact)]




Implementation: integration

Frontend: ——
* React-native -
* Only displays results -
RN Get_predict
Backend: | ”l | | . | = | G
* FastAPI (Python) .
* NN Service (PyTorch) """ ”"“

* Solver Service (CPMpy)

* Preloading, caching, |
hyperparameter optimisation...
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Algorithm Configuration

Motivation

Constraint solvers support many hyper-parameters:
» settings for heuristics, pre-solve parameters...
Assuming similar parameters work well across instances of similar problems,

» Tune constraint solver on one instance and re-use configuration

Very easy to do in CPMpy because of direct solver access (checkout our examples!)

model.solve(
cp_model probing level = 2,
preferred_variable orde = 1
symmetry level = 2
search branching = 5,
use_erwa_heuristic = True

Naive approach: full grid search on entire hyper-parameter space



| obabi

lani

Avg ~0.1s

Responsiveness?

w4l

L« o=
Avg ~1.6 s (dev 3.2s)

NOT TUNED

12:00 v4n

Hint sudoku

Avg ~0.9 s (dev 1.2s)

TUNED
(was much more)



Other relevant topics:

Can we integrate instance-specific algorithm configuration?
When to use which solver/transformations?
Can we learn explanation preferences?

Can we learn the constraints from data?

Can we train an ML model based on the quality after
solving (decision-focussed learning)?

Can we explain across the CP & ML model?



Conclusion



Wider view: integration

Machine Learning
predictions

Visualisations

Explainability

Solve

%

Algorithm
configuration

Master-
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Interactive
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Bigger picture

Learning implicit user preferences
Learning from the environment
Explaining constraint solving

Stateful interaction




Sudoku Assistant
as integration example

Needed all of:

® FEasy integration with Machine Learning libraries
=> Python and numpy arrays

® [Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination
=> solver independent and multi-solver

® Also parameter tuning, visualisations, web service deployment, etc
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