

Integrating CP with ML and explanations

The Sudoku Assistant App (and CPMpy)

Prof. Tias Guns <tias.guns@kuleuven.be> @TiasGuns

Maxime Mulamba

Milan Pesa

Ignace Bleukx

Emilio Gamba

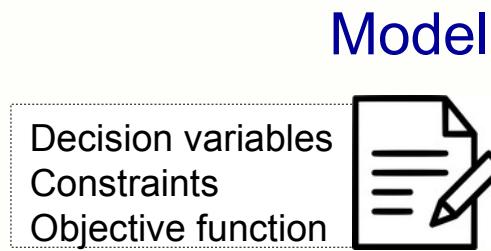
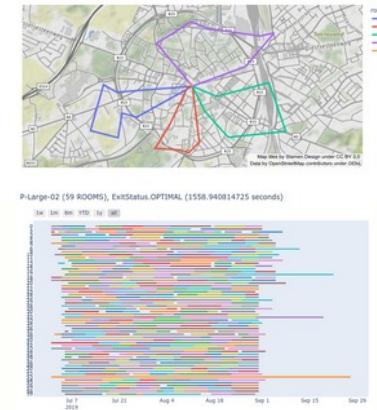
Bart Bogaerts

Senne Berden

A

T

General-purpose constraint solving



Constraint solving paradigm

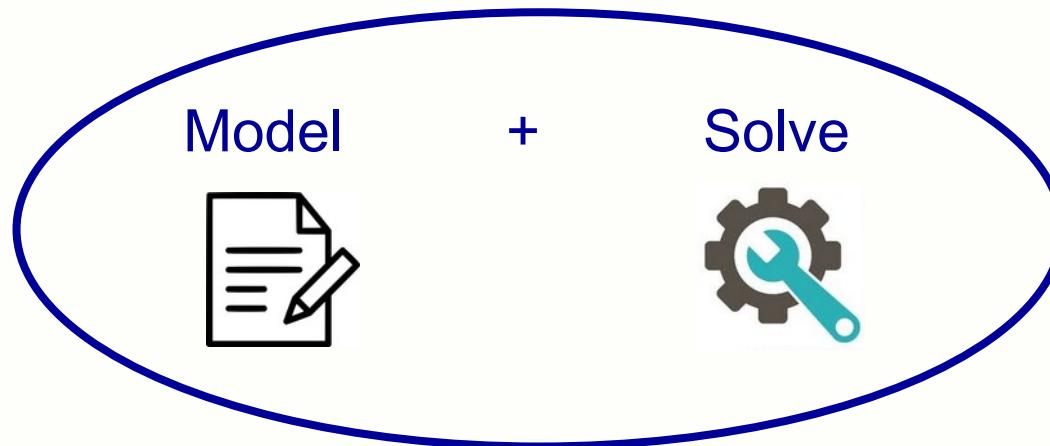
Rich research on
modeling languages, automatic transformations,
solver independence, modelling tools

Tools: MiniZinc, Essence', CPMpy

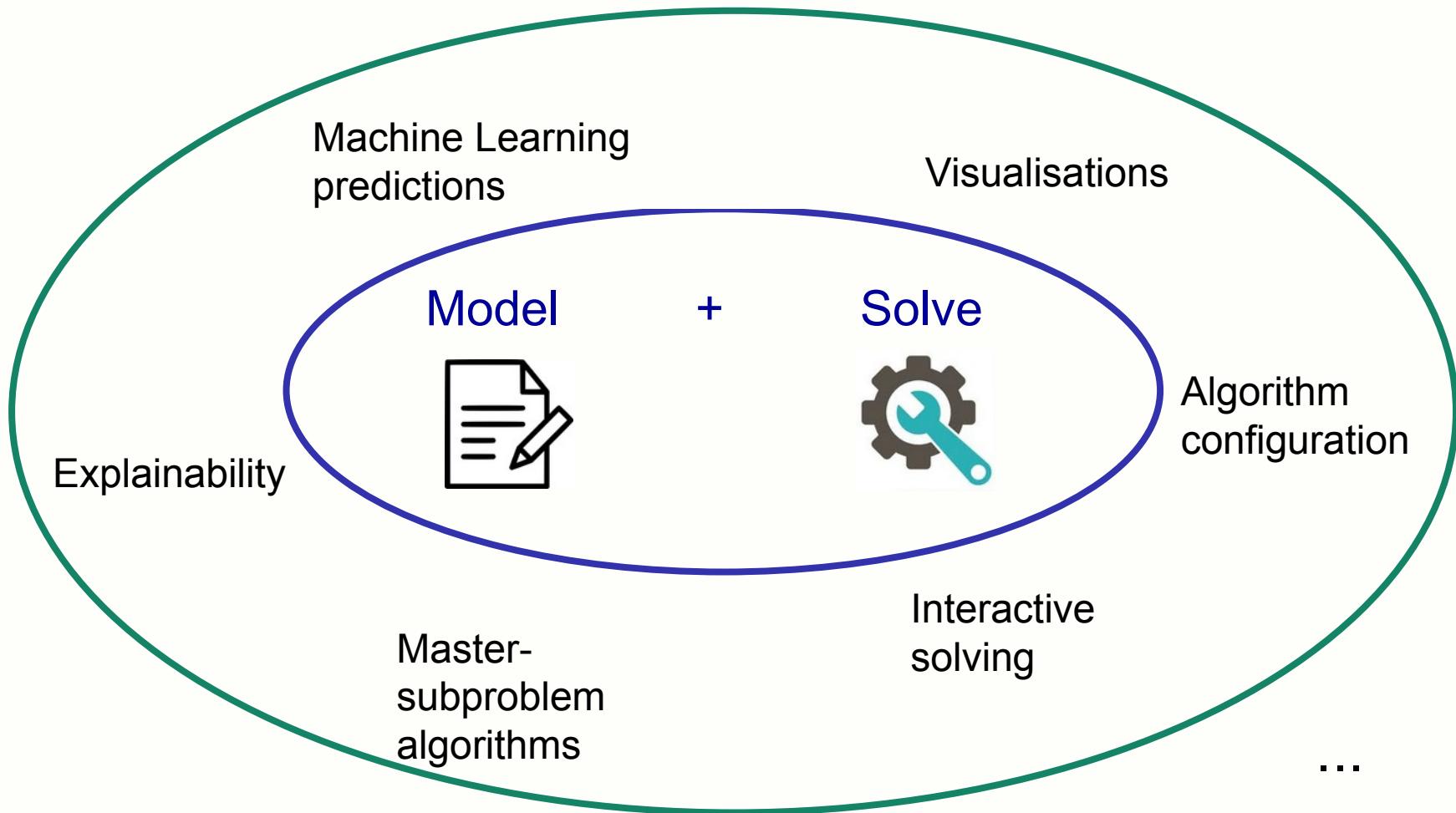
Rich research on
efficient solvers, (global) constraint propagators,
automatic search, algorithm configuration, ...

Tools: OrTools, Gecode, Gurobi, Z3, ...

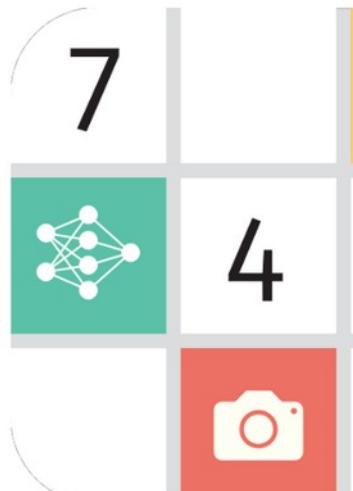
Wider view



Wider view: integration



Percep



<https://sudokuassistant.com>

The certificate is for the "AAAI Best Technical Demonstration Award" presented on February 7-14, 2023. It is awarded to Tias Guns, Emilio Gamba, Maxime Mulamba Ke Tchomba, Ignace Bleukx, Senne Berden, and Milan Pesa. The award is for a demonstration of the "Sudoku Assistant" app, which is described as an AI-powered app to help solve pen-and-paper Sudokus. The certificate is presented at the 37th AAAI Conference on Artificial Intelligence.

**BEST TECHNICAL
DEMONSTRATION AWARD**

FEBRUARY 7-14, 2023

THE ASSOCIATION FOR THE ADVANCEMENT OF ARTIFICIAL INTELLIGENCE
proudly presents

THE AWARD FOR 2023 AAAI BEST TECHNICAL DEMONSTRATION TO

*Tias Guns, Emilio Gamba,
Maxime Mulamba Ke Tchomba,
Ignace Bleukx, Senne Berden,
& Milan Pesa*

A DEMONSTRATION OF SUDOKU ASSISTANT –
AN AI-POWERED APP TO HELP SOLVE PEN-AND-PAPER SUDOKUS

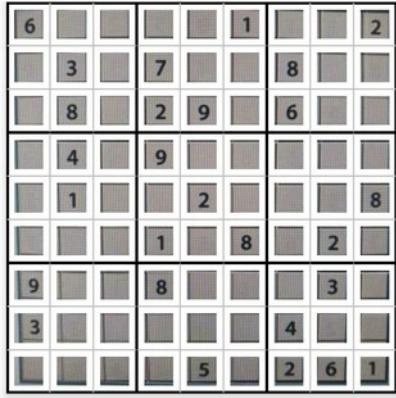
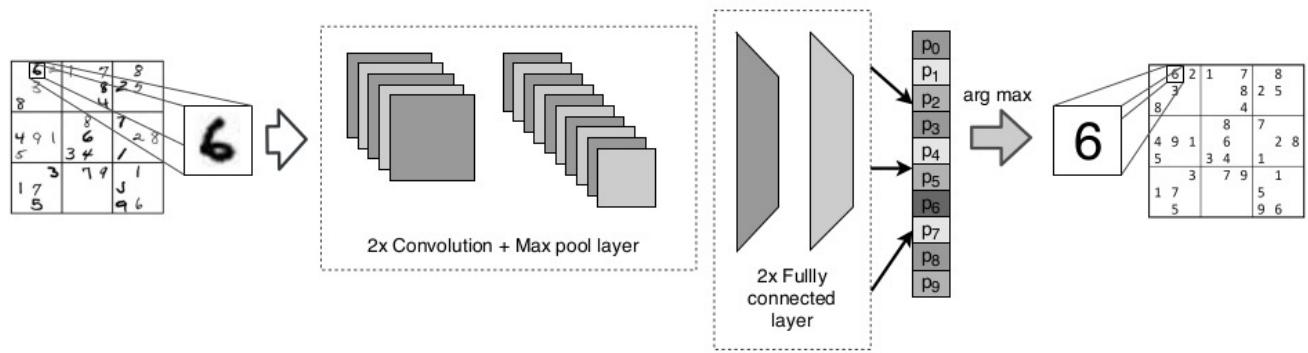
PRESENTED AT THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE

Solving:

GET IT ON
Google Play

Sudoku Assistant: usage demo

1) Recognizing the Sudoku digits



- Cut into 81 pieces (introduces additional noise)
- Predict 1-9 or empty (printed and handwritten, robust to borders and markings)
- Custom but standard ML

2) solving the sudoku

Rules of Sudoku (source: sudoku.com)

- **Sudoku Rule № 1: Use Numbers 1-9**

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” (made up of 3 x 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9, without repeating any numbers within the row, column or square. Does it sound complicated? As you can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces already filled in; the more spaces filled in, the easier the game – the more difficult Sudoku puzzles have very few spaces that are already filled in.

7	2			4	9			
3		4		8	9	1		
8	1	9			6	2	5	4
7		1					9	5
9					2	7		
			8		7	1	2	
4	5				1	6	2	
2	3	7				5		1
			2	5	7			

Model

Decision variables
Constraints
Objective function

+

Solve

2) solving the sudoku

Decision variables
Constraints
Objective function

Model =

- Variables, with a domain
- Constraints over variables

- `grid[i,j] :: {1..9}` for `i,j` in `{1..9}`
- `alldifferent(grid[i,:])` for `i` in `{1..9}` – rows
`alldifferent(grid[:,j])` for `j` in `{1..9}` – columns
`alldifferent(square(grid, k,l))` for `k,l` in `{1..3}` – squares
`grid[i,j] == given[i,j]` if `given[i,j]` not empty for `i,j` in `{1..9}`

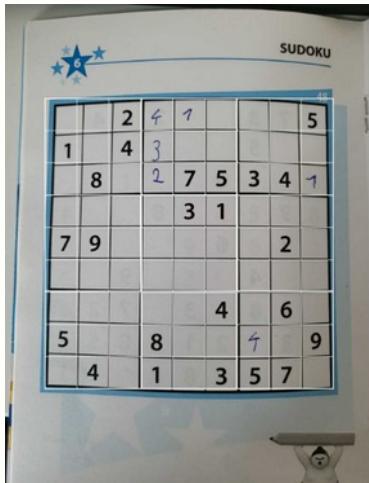
- **Sudoku Rule № 1: Use Numbers 1-9**

Model.solve()

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” (made up of 3 x 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9, without repeating any numbers within the row, column or square. Does it sound complicated? As you can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces already filled in; the more spaces filled in, the easier the game – the more difficult Sudoku puzzles

2) solving the sudoku

Decision variables
Constraints
Objective function



```
e = 0 # value for empty cells
given = np.array([
    [e, e, 2, 4, 1, e, e, e, 5],
    [1, e, 4, 3, e, e, e, e, e],
    [e, 8, e, 2, 7, 5, 3, 4, 1],
    [e, e, e, e, 3, 1, e, e, e],
    [7, 9, e, e, e, e, e, 2, e],
    [e, e, e, e, e, e, e, e, e],
    [e, e, e, e, e, 4, e, 6, e],
    [5, e, e, 8, e, e, 4, e, 9],
    [e, 4, e, 1, e, 3, 5, 7, e]])
```

```
model = Model()

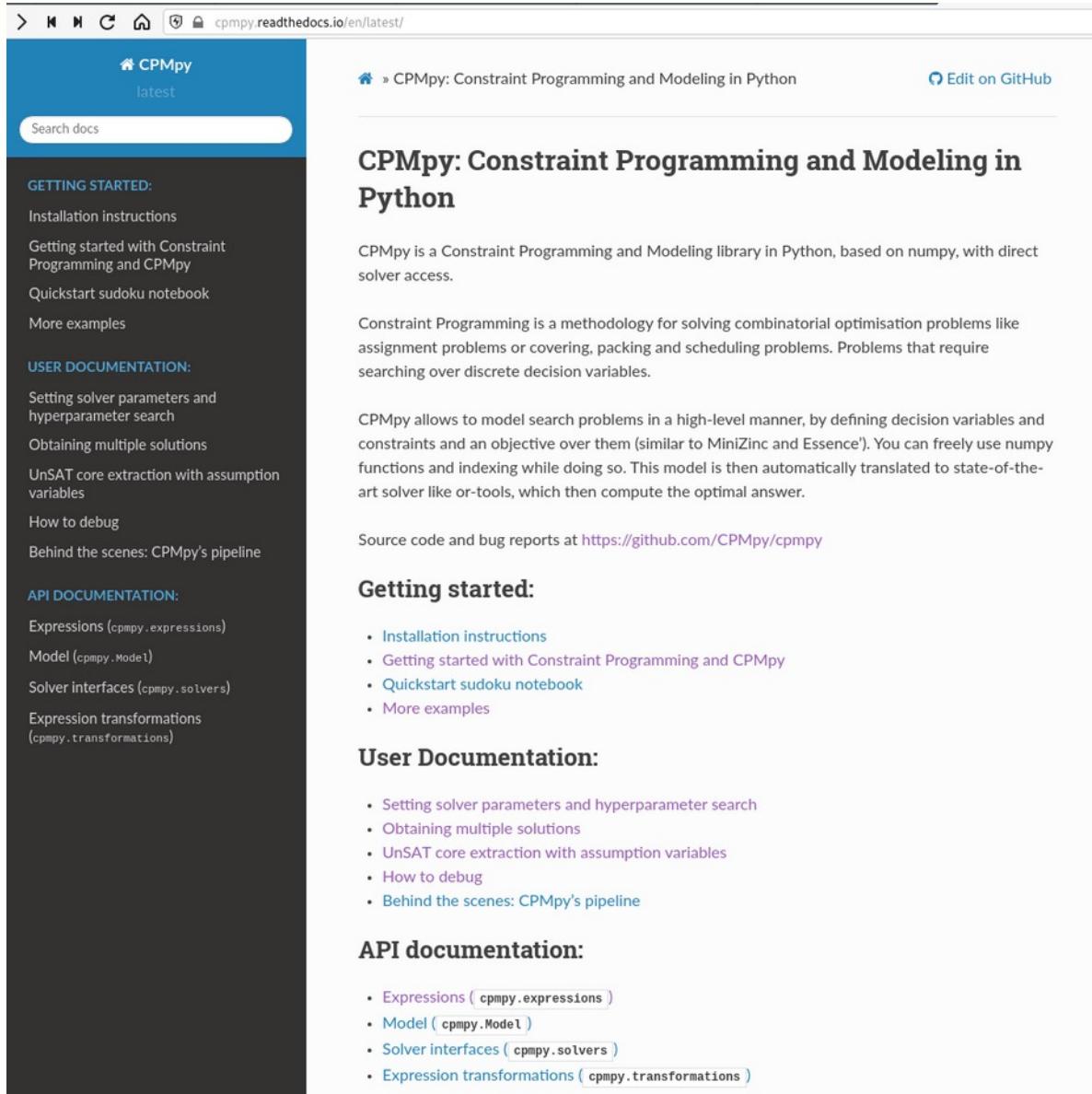
# Variables
puzzle = intvar(1, 9, shape=given.shape, name="puzzle")

# Constraints on rows and columns
model += [AllDifferent(row) for row in puzzle]
model += [AllDifferent(col) for col in puzzle.T]

# Constraints on blocks
for i in range(0,9, 3):
    for j in range(0,9, 3):
        model += AllDifferent(puzzle[i:i+3, j:j+3])

# Constraints on values (cells that are not empty)
model += (puzzle[given!=e] == given[given!=e])

model.solve()
```



The screenshot shows a browser window displaying the CPMPy documentation at <https://cpmpy.readthedocs.io/en/latest/>. The page title is "CPMPy: Constraint Programming and Modeling in Python". The left sidebar contains a "GETTING STARTED" section with links to "Installation instructions", "Getting started with Constraint Programming and CPMPy", "Quickstart sudoku notebook", and "More examples". Below it is a "USER DOCUMENTATION" section with links to "Setting solver parameters and hyperparameter search", "Obtaining multiple solutions", "UnSAT core extraction with assumption variables", "How to debug", and "Behind the scenes: CPMPy's pipeline". The main content area starts with a brief introduction to CPMPy as a Constraint Programming and Modeling library in Python, based on numpy, with direct solver access. It then describes Constraint Programming as a methodology for solving combinatorial optimisation problems like assignment problems or covering, packing and scheduling problems. The next section, "How CPMPy works", explains that CPMPy allows to model search problems in a high-level manner, by defining decision variables and constraints and an objective over them (similar to MiniZinc and Essence'). You can freely use numpy functions and indexing while doing so. This model is then automatically translated to state-of-the-art solver like or-tools, which then compute the optimal answer. Below this is a link to the source code and bug reports at <https://github.com/CPMPy/cpmpy>. The page is styled with a dark sidebar and a light main content area, with blue links and a blue header bar.

<https://github.com/CPMPy/cpmpy>

CPMPy:

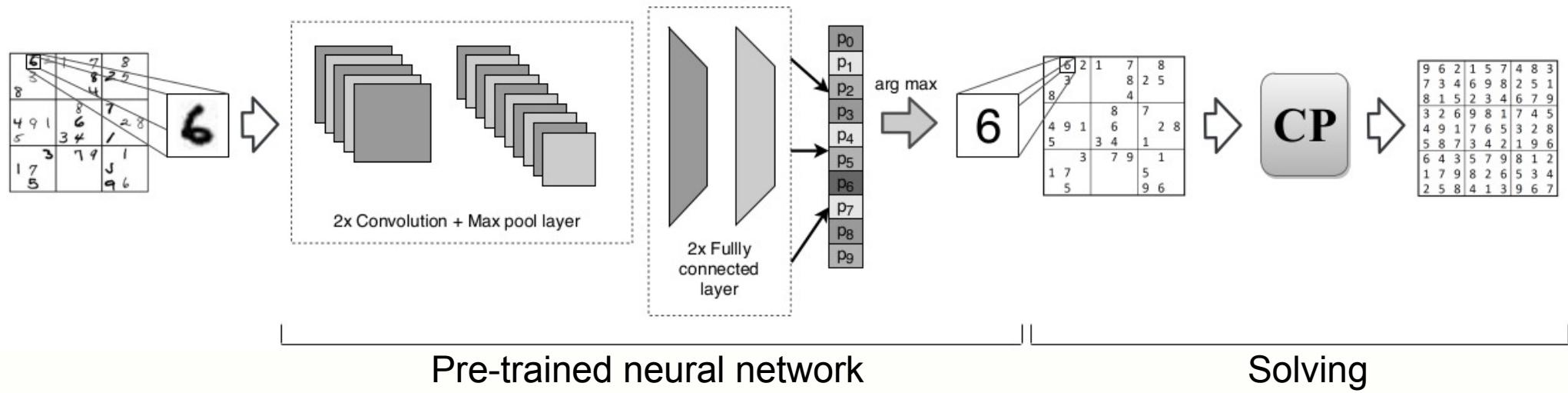
- Open source
- Python/Numpy based
- Direct solver access

Supported solvers:

- ORTools (CP)
- Gurobi, Exact (MIP)
- Z3 (SMT)
- PySAT (SAT)
- PySDD (knowledge comp)
- More to come... (SCIP, CPOpt)

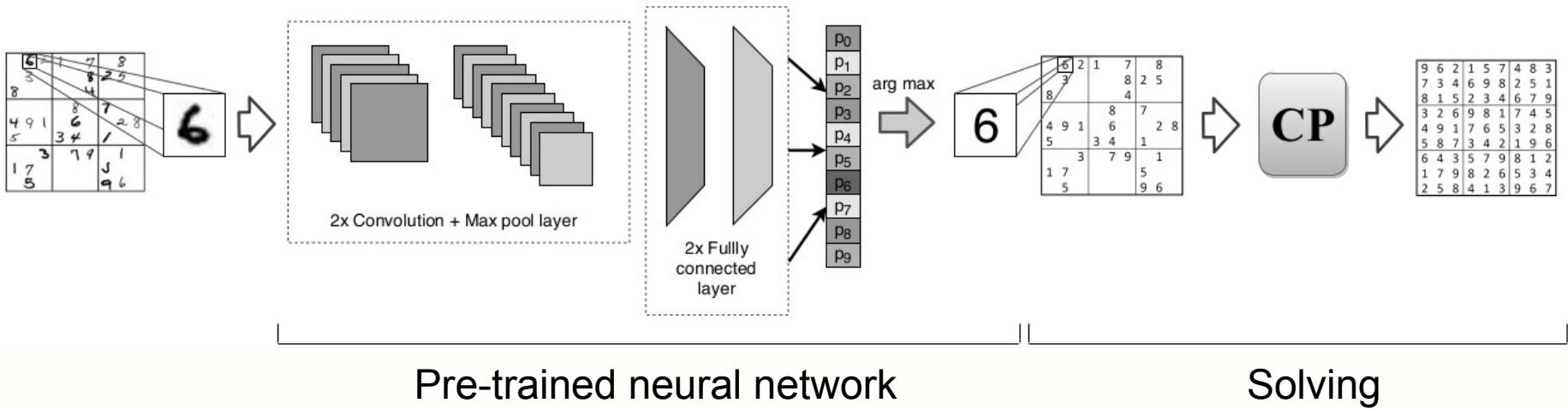
Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naïve)



	accuracy		failure rate	time
	img	cell	grid	average (s)
baseline	94.75%	15.51%	14.67%	84.43%
				0.01

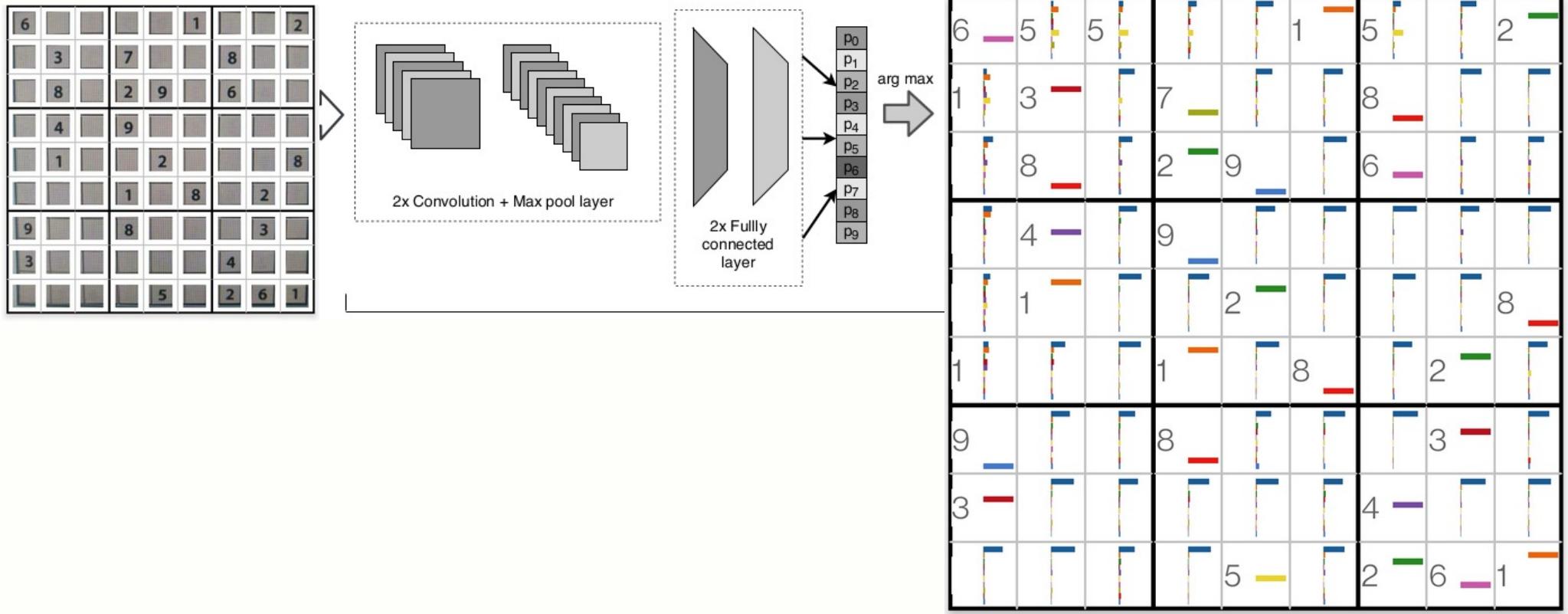
Perception-based constraint solving



What is going on?

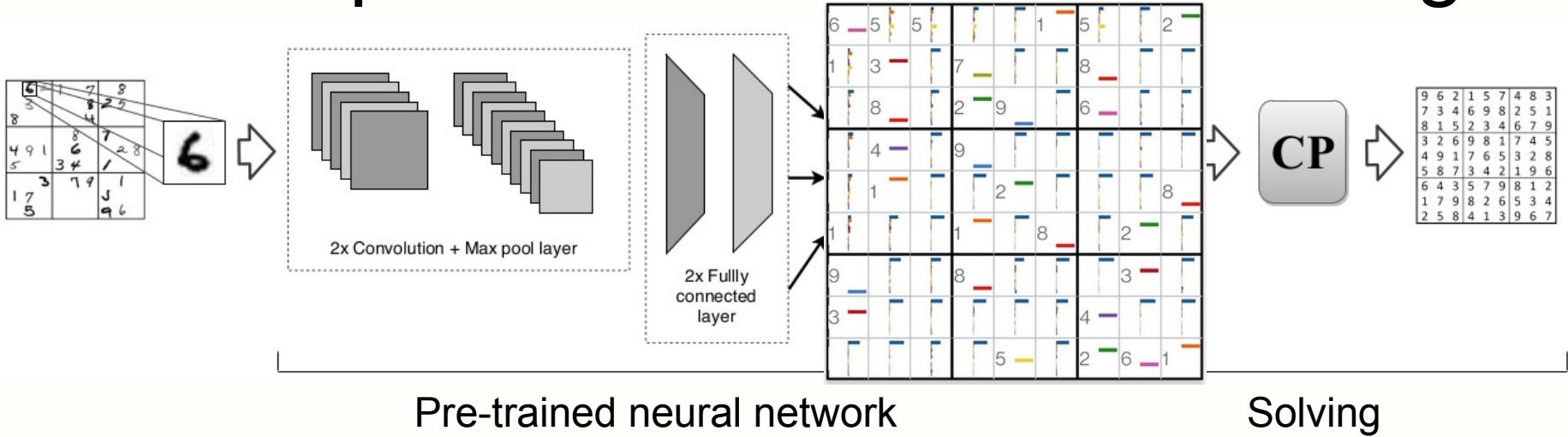
- Each cell predicts the maximum likelihood value:
$$\hat{y}_{ij} = \arg \max P(y_{ij} = k | X_{ij})$$
- But you need all 81 predictions (one for each given cell), it is a multi-output problem: together this is the 'maximum likelihood' interpretation
- If $\text{sudoku}(\hat{y}) = \text{False}$: no solution, interpretation is wrong...

Perception-based constraint solving



What about the *next* most likely interpretation?

Perception-based constraint solving



What about the *next* most likely interpretation?

- Treat prediction as *joint inference* problem:

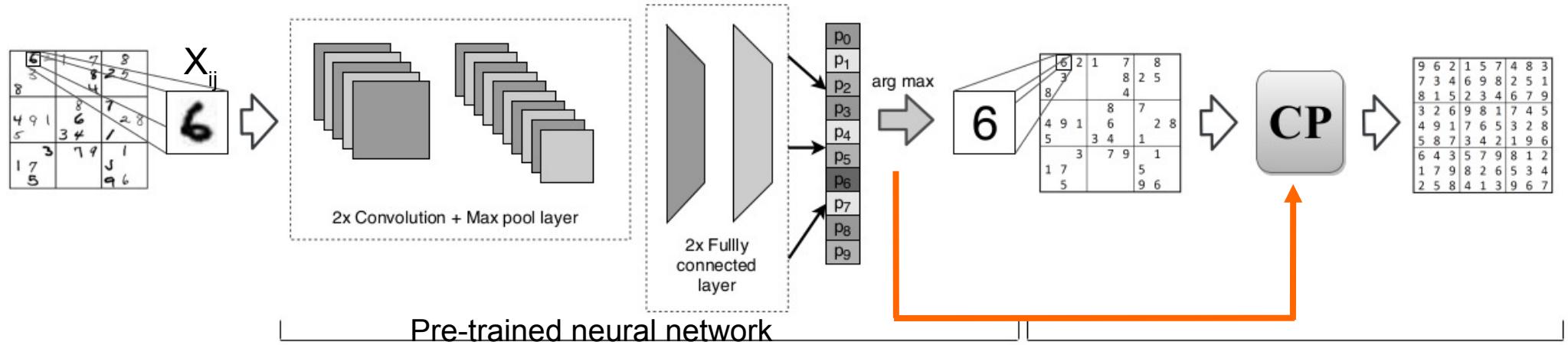
$$\hat{y} = \arg \max \prod_{ij} P(y_{ij} = k | X_{ij}) \quad \text{s.t.} \quad \text{sudoku}(\hat{y})$$

- This is the **constrained** ‘maximum likelihood’ interpretation

=> Structured output prediction

Used e.g. in NLP: [Punyakanok, COLING04]

Perception-based constraint solving



Can we use a constraint solver for that?

$$\hat{y} = \arg \max \prod_{ij} P(y_{ij} = k | X_{ij}) \quad \text{s.t.} \quad \text{sudoku}(\hat{y})$$

- Log-likelihood trick:

$$\min \sum_{\substack{(i,j) \in \\ \text{given}}} \sum_{k \in \{1,..,9\}} \frac{-\log(P_\theta(y_{ij} = k | X_{ij})) * \mathbb{1}[s_{ij} = k]}{\text{constant}} \quad \text{s.t.} \quad \text{sudoku}(\hat{y})$$

Can do even better!

Are we using all available information?

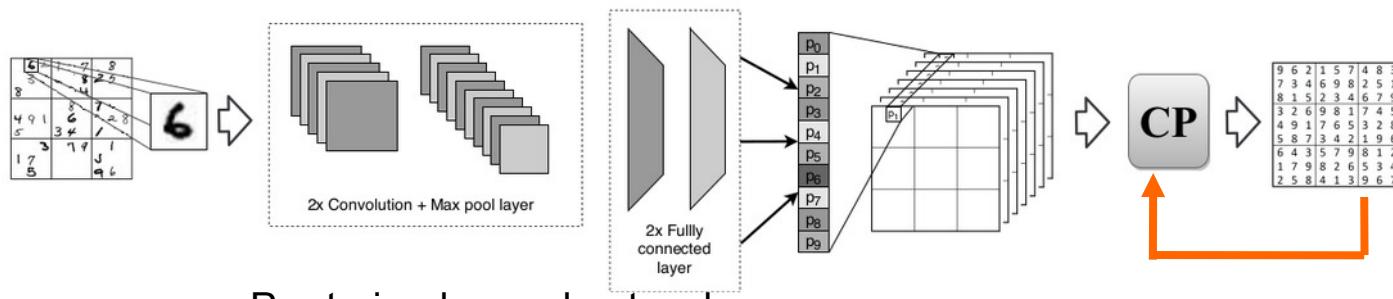
A sudoku puzzle has to have one unique solution

→ not in current constraint model: a 2nd order constraint

$$\begin{array}{ll} \text{argmin}_X & f(X) \\ \text{subject to} & C(X) \\ & \#X' : X \neq X', C(X') \end{array}$$

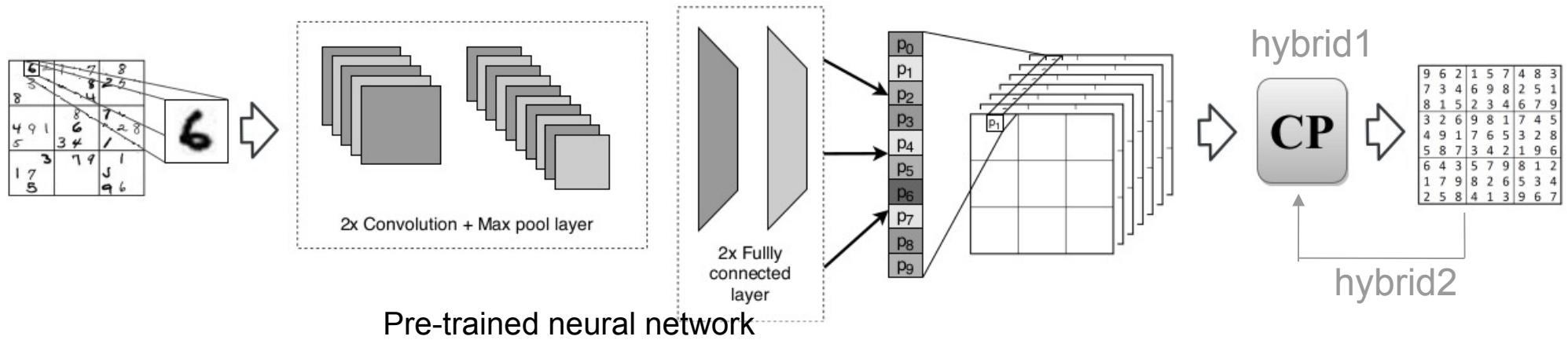
But we can add cutting planes!

if the joint max likelihood image interpretation has multiple solutions:
forbid (nogood/cutting plane) and find next most likely one!



Perception-based constraint solving

Hybrid: CP solver does *joint inference* over raw probabilities

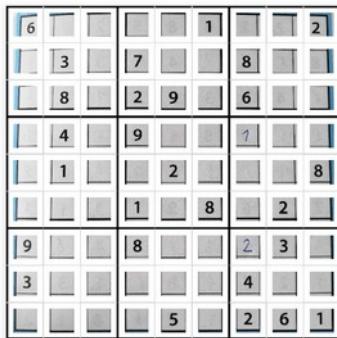


	accuracy		failure rate	time
	img	cell	grid	average (s)
baseline	94.75%	15.51%	14.67%	84.43%
hybrid1	99.69%	99.38%	92.33%	0%
hybrid2	99.72%	99.44%	92.93%	0%

Sudoku Assistant demo, continued

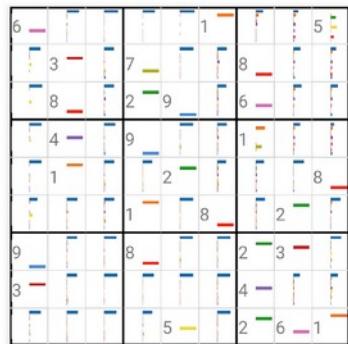
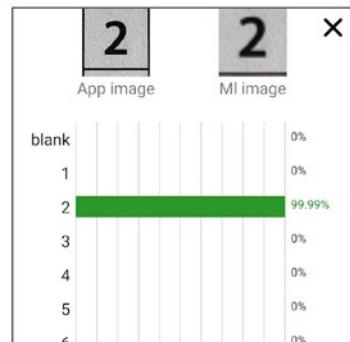
12:00

Check Alignment



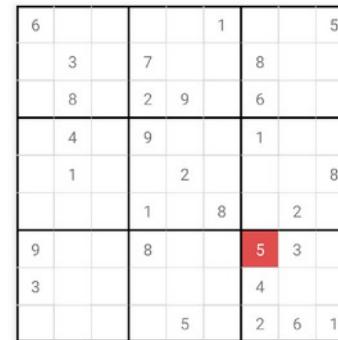
12:00

Click a cell to see its predicted probabilities better:



12:00

Click to highlight values:



Show hint

Show solution

Scan Another Sudoku

Show solution?

Trivial for CP system (subsecond),
Boring and demotivating for user?

Solved sudoku

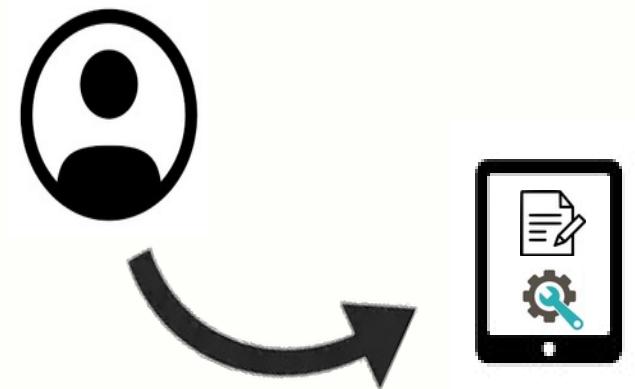
6	2	7	4	8	1	3	9	5
4	3	9	7	6	5	8	1	2
1	8	5	2	9	3	6	7	4
2	4	8	9	3	7	1	5	6
7	1	3	5	2	6	9	4	8
5	9	6	1	4	8	7	2	3
9	6	2	8	1	4	5	3	7
3	5	1	6	7	2	4	8	9
8	7	4	3	5	9	2	6	1

In general: human-aware AI &
AI assistants:

- *Support* users in decision making
- Respect human *agency*
- Provide *explanations* and learning opportunities

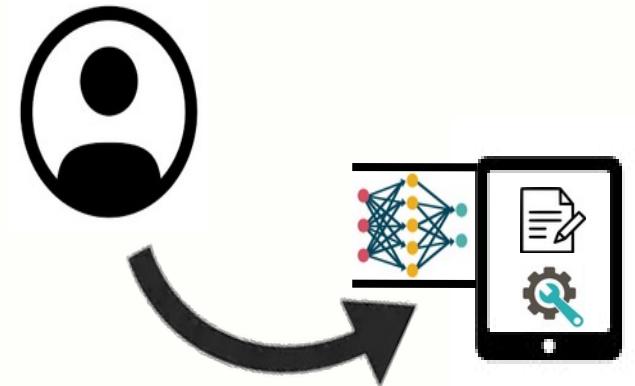
Constraint solving is more than mathematical abstractions...

Bigger picture



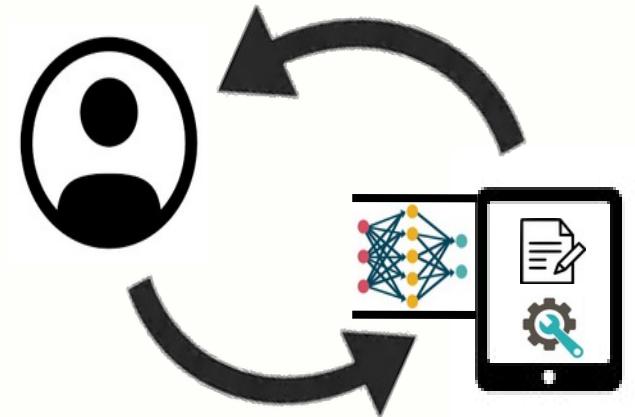
Bigger picture

- Learning implicit user preferences
- Learning from the environment



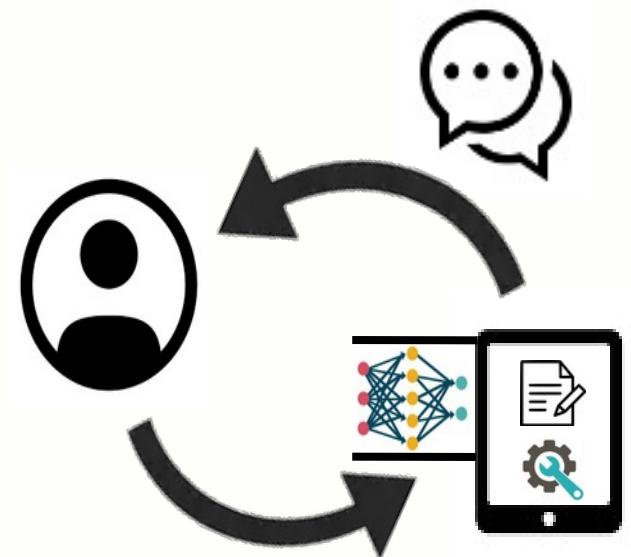
Bigger picture

- Learning implicit user preferences
- Learning from the environment
- Explaining constraint solving

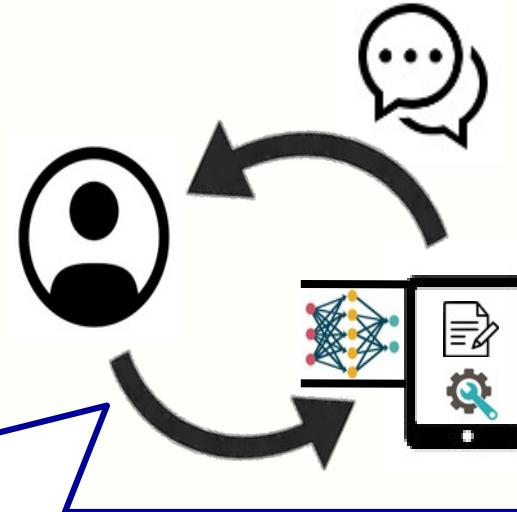


Bigger picture

- Learning implicit user preferences
- Learning from the environment
- Explaining constraint solving
- Stateful interaction



CHAT-Opt: Conversational Human-Aware Technology for Optimisation



Towards **co-creation** of constraint optimisation solutions

- Solver that learns from user and environment
- Towards conversational: explanations and stateful interaction

<https://people.cs.kuleuven.be/~tias.guns/chat-opt.html>

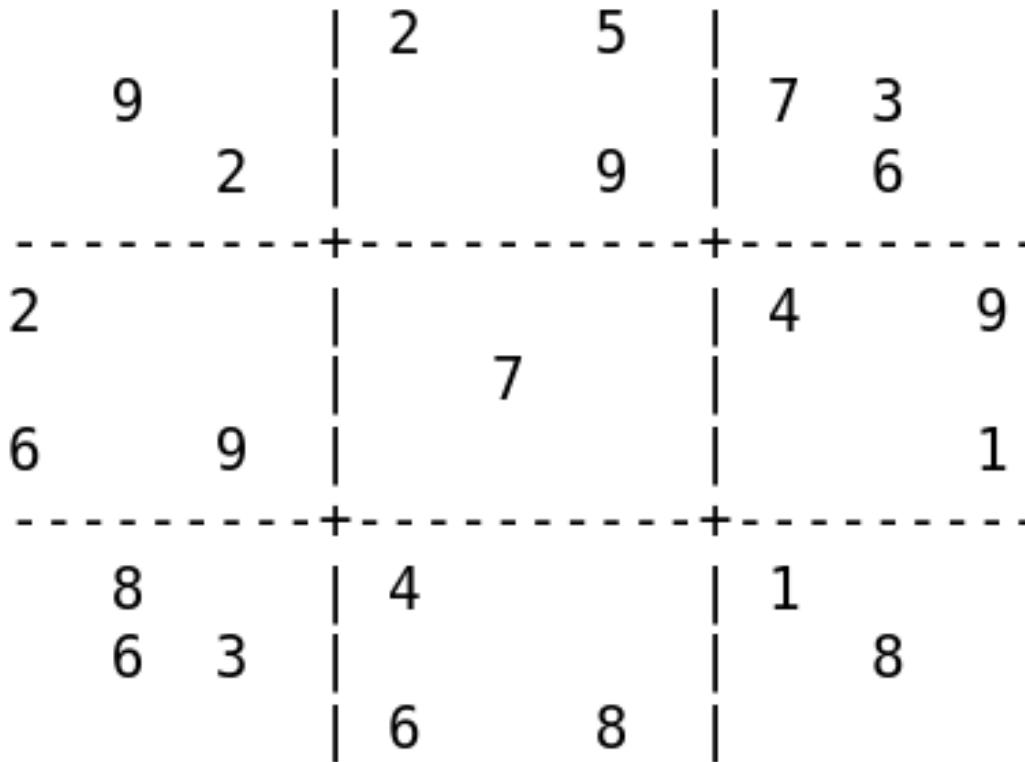
Visitors welcome!

6			1	5
3		7		8
8		2	9	6
4		9		1
1		2		8
		1	8	2
9	8	5	3	?
3		4		
	5	2	6	1

Stepwise Explanation for Constraint Satisfaction Problems

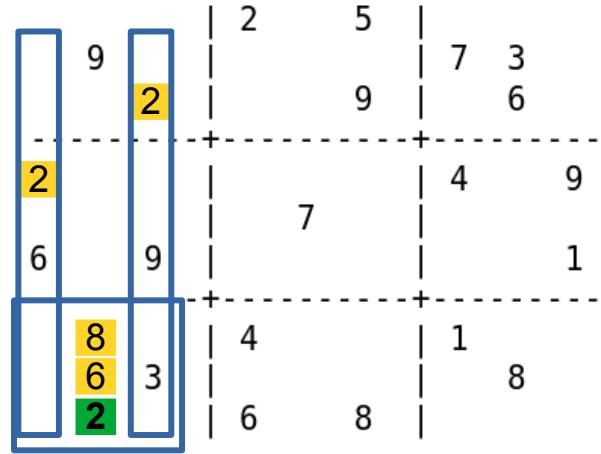
Bogaerts, Bart, Emilio Gamba, and Tias Guns. "A framework for step-wise explaining how to solve constraint satisfaction problems." *Artificial Intelligence* 300 (2021)

Help, I'm stuck:



What would a solver do?

- User may not understand all derivations
- Or wants to learn from it



“Explain in a human-understandable way how to solve constraint satisfaction problems”

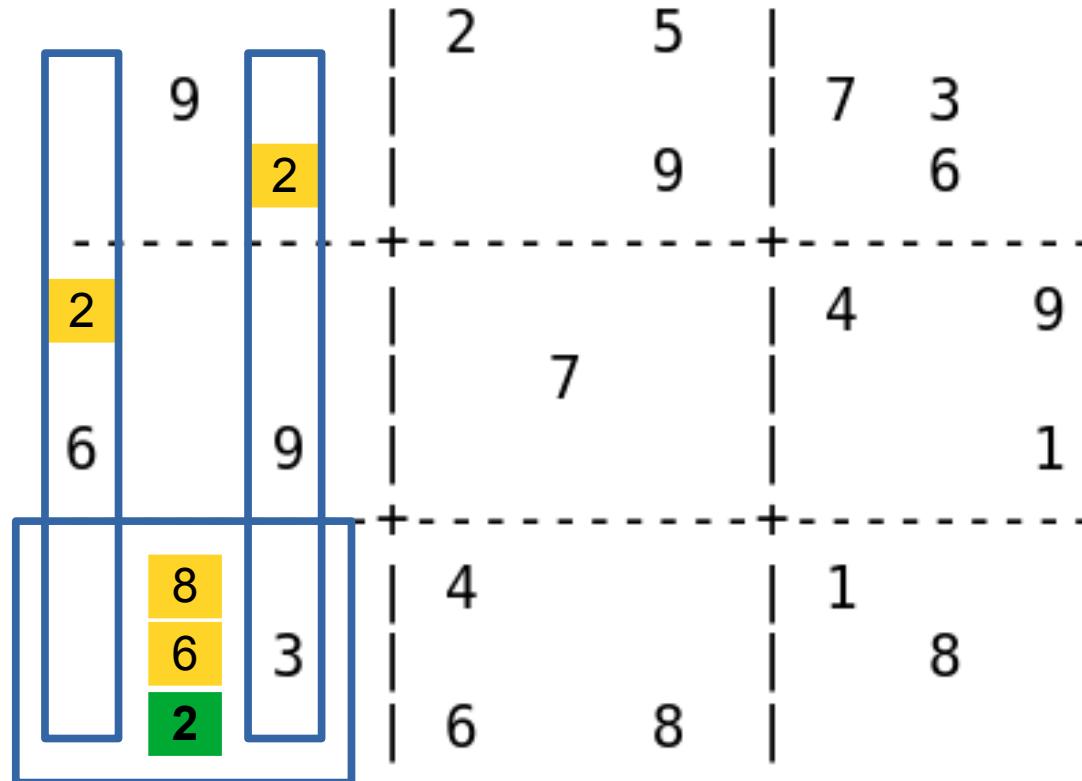
Explanations for a SAT problem

Ex. 2019 Holy Grail Challenge (E. Freuder)

Logic Grid Puzzles (aka Zebra/Einstein puzzles)

- Parse puzzles and translate into CSP
- Solve CSP automatically
- Explain in a human-understandable way how to solve this puzzle

Explain 1 variable from maximal consequence



Explanation step

Let E' & $S' \Rightarrow n$ be one explanation step.

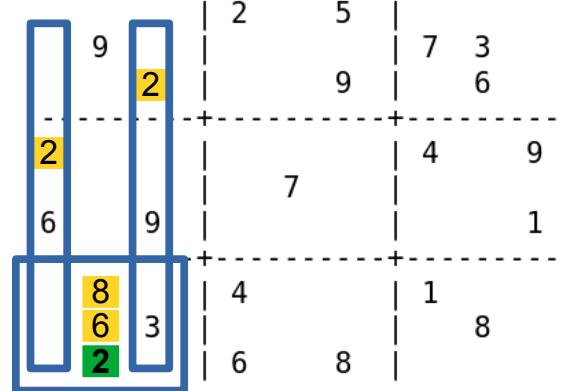
E' = a subset of previously derived facts E

(Sudoku) Given and derived digits in the grid

S' = a minimal subset of constraints S such that $E' \& S' \Rightarrow n$

(Sudoku) Alldifferent column, row, box constraints

n = a newly derived fact (from the solution)



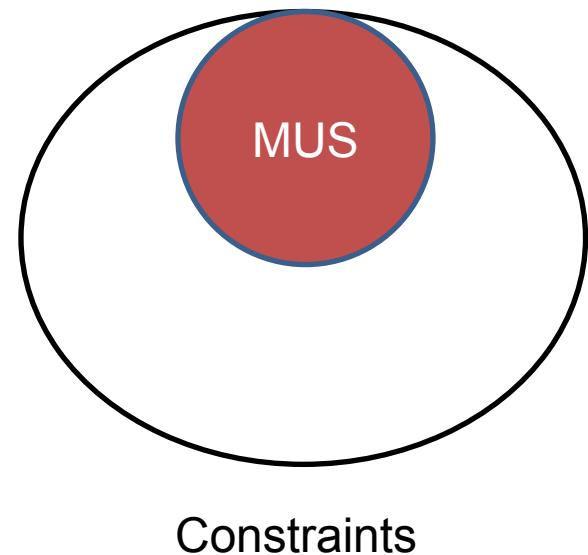
How? $\text{MUS}(\neg n \& E \& S)$ is a valid explanation step

UNSAT set of constraints

= Need for an explanation of UNSAT

1. Identify conflicting constraints as explanation for UNSAT

→ Extract Minimum Unsatisfiable Subset (MUS)
a.k.a Irreducible Inconsistent Subsystem (IIS)



Explaining UNSAT with MUSes

Methods

1. Some solvers provide an implementation for extracting unsatisfiable cores as explanations of UNSAT.
2. **Deletion-based** Minimal unsatisfiable subsets
 - Iterate over constraints
 - Delete constraints if removing them leaves the model UNSAT

```
def mus(constraints):
    m = Model(constraints)
    assert ~m.solve(), "MUS: model must be UNSAT"

    core = m.get_core() # or all constraints ← 1
    i = 0
    while i < len(core):
        subcore = core[:i] + core[i+1:] # check if all but i makes core SAT

        if Model(subcore).solve():
            i += 1 # removing it makes it SAT, must keep
        else:
            core = subcore # overwrite core, so core[i] is next one ← 2

    return core
```

Example of MUS extraction

[examples/tutorial_ijcai22/3_musx.ipynb](#)

The best/easiest explanation step...

- Let $f(S)$ be a *cost function* that quantifies how good (e.g. easy to understand) an explanation step is.

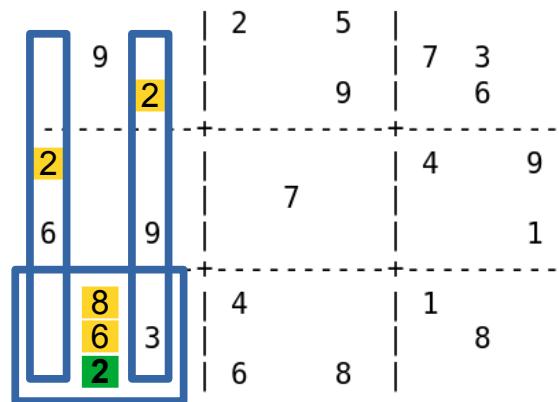
Simple MUS-based algo:

```

sol-to-explain = propagate( E & S ) \ E

X_best = None
for n in sol-to-explain:
    X = MUS( ~ n & E & S )
    if f(X) < f(X_best):
        X_best = X
return X_best

```



MUS gives no guarantees on quality, only subset minimal (SMUS)

The best/easiest explanation step...

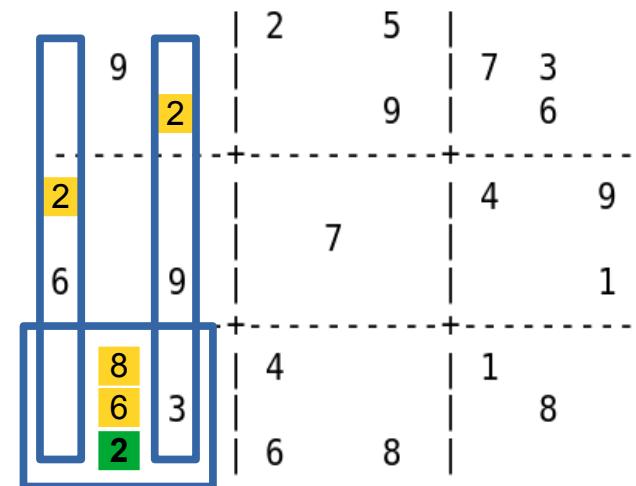
- Let $f(S)$ be a *cost function* that quantifies how good (e.g. easy to understand) an explanation step is.

Explain 1 step with OCUS

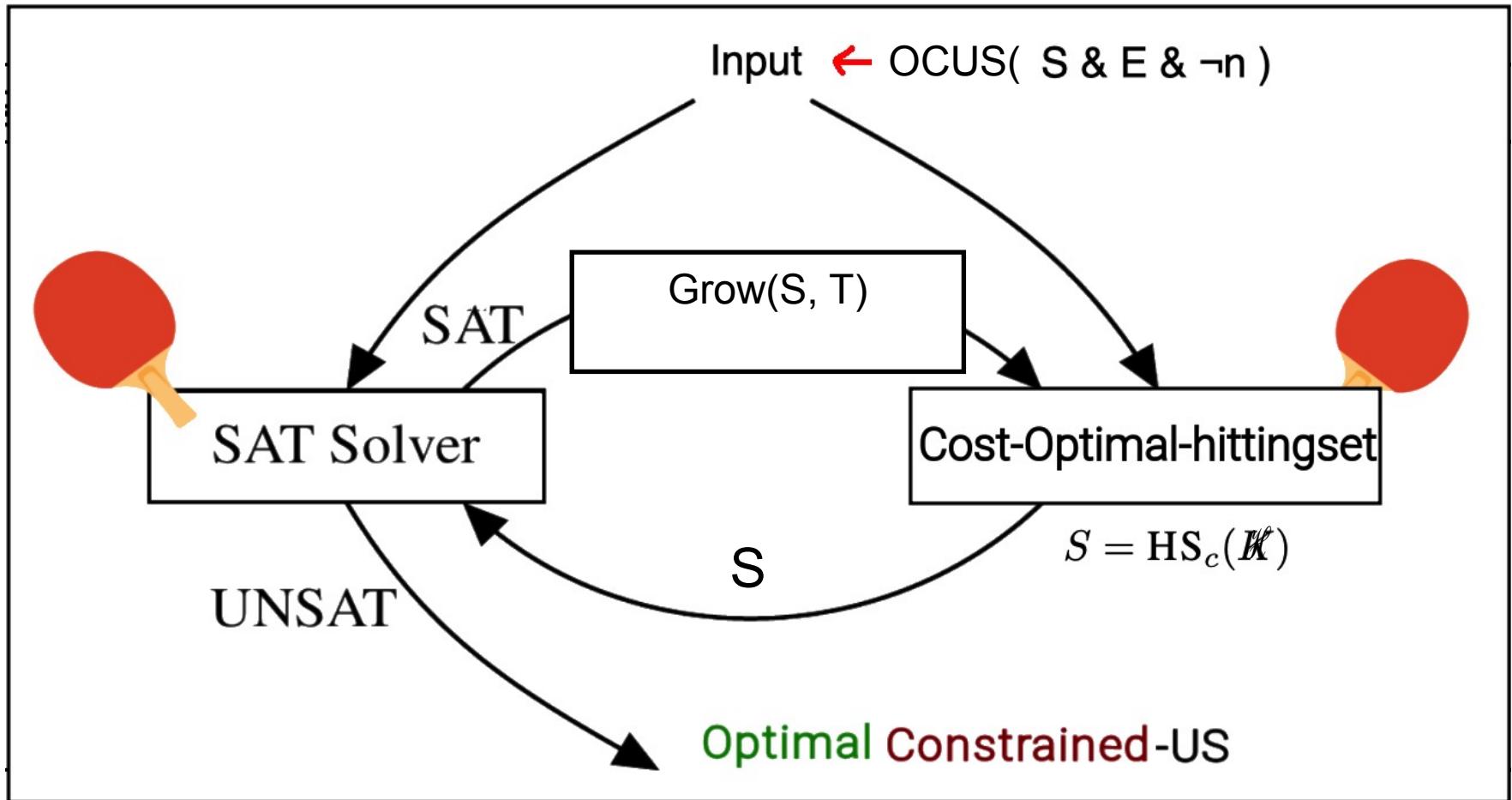
sol-to-explain = propagate ($E \wedge S \setminus E$)

$c = \text{exactly-one}(\{\sim n \mid n \in \text{sol-to-explain}\})$,

return OCUS($n \mid n \in \text{sol-to-explain} \wedge S \wedge E \wedge \{\sim, f, c\}$)



Implicit hitting-set algorithm



OUS extraction

[examples/tutorial_ijcai22/5_ocus_explanations.ipynb](#)

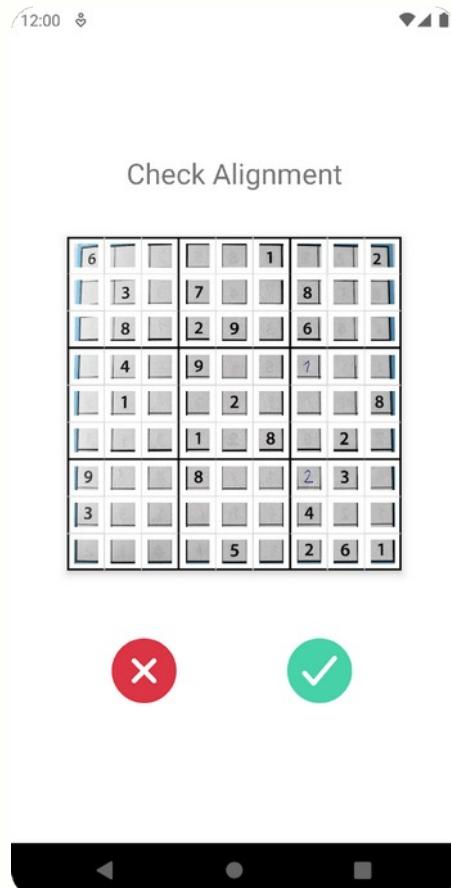
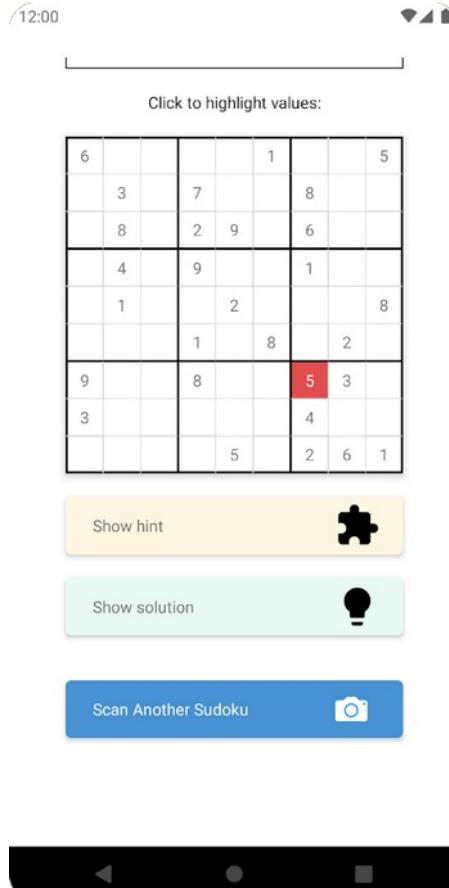
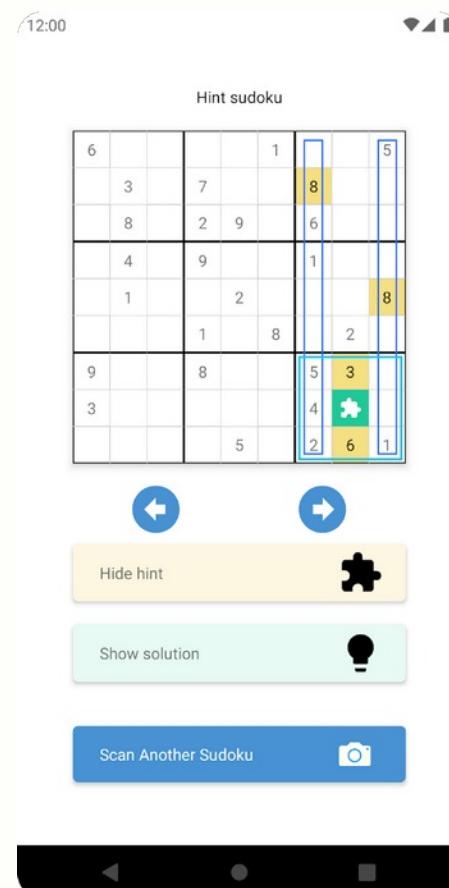
Stepwise Explanation for Constraint Satisfaction Problems

Intelligible hints:

- The Constraint Solver searches for the **Optimal Unsatisfiable Subset** (OUS) for the negation of each value to be assigned.
- Computing this over all empty cells is **computationally challenging**.
- A cost function estimates the complexity of each subset, which allows the app to provide the **easiest** one at each step

6			1		5
3		7		8	
8		2	9		6
4		9		1	
1			2		8
		1	8		2
9		8		5 3	?
3				4	
		5		2 6	1

Sudoku Assistant demo, continued



The changing role of solvers

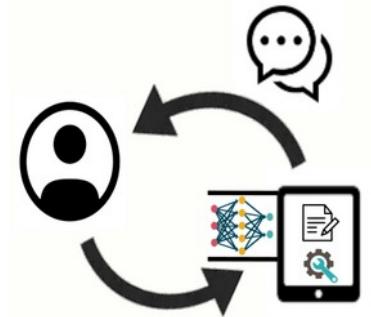
Holy Grail: user specifies, solver solves [Freuder,1997]

I think we reached it... MiniZinc, Essence

- “Beyond NP” → Constraint Solver as an **oracle**
- Use CP solver to solve subproblem of larger algorithm
- Iteratively build-up and solve a problem until failure
- Integrate neural network predictions (structured output prediction)
- Generate proofs, explanations, or counterfactual examples, ...

[Freuder,1997] Freuder, Eugene C. "In pursuit of the holy grail." *Constraints* 2.1 (1997): 57-61.

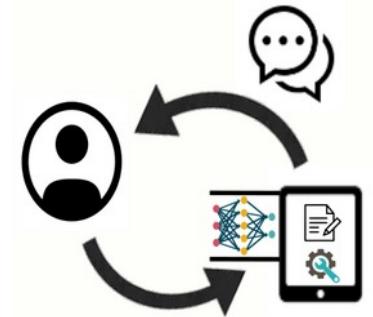
Integrated solving



What would the ideal Constraint Solving system be?

- Efficient repeated solving
=> Incremental
- Use CP/SAT/MIP or any combination
=> solver independent and multi-solver
- Easy integration with Machine Learning libraries
=> Python and numpy arrays

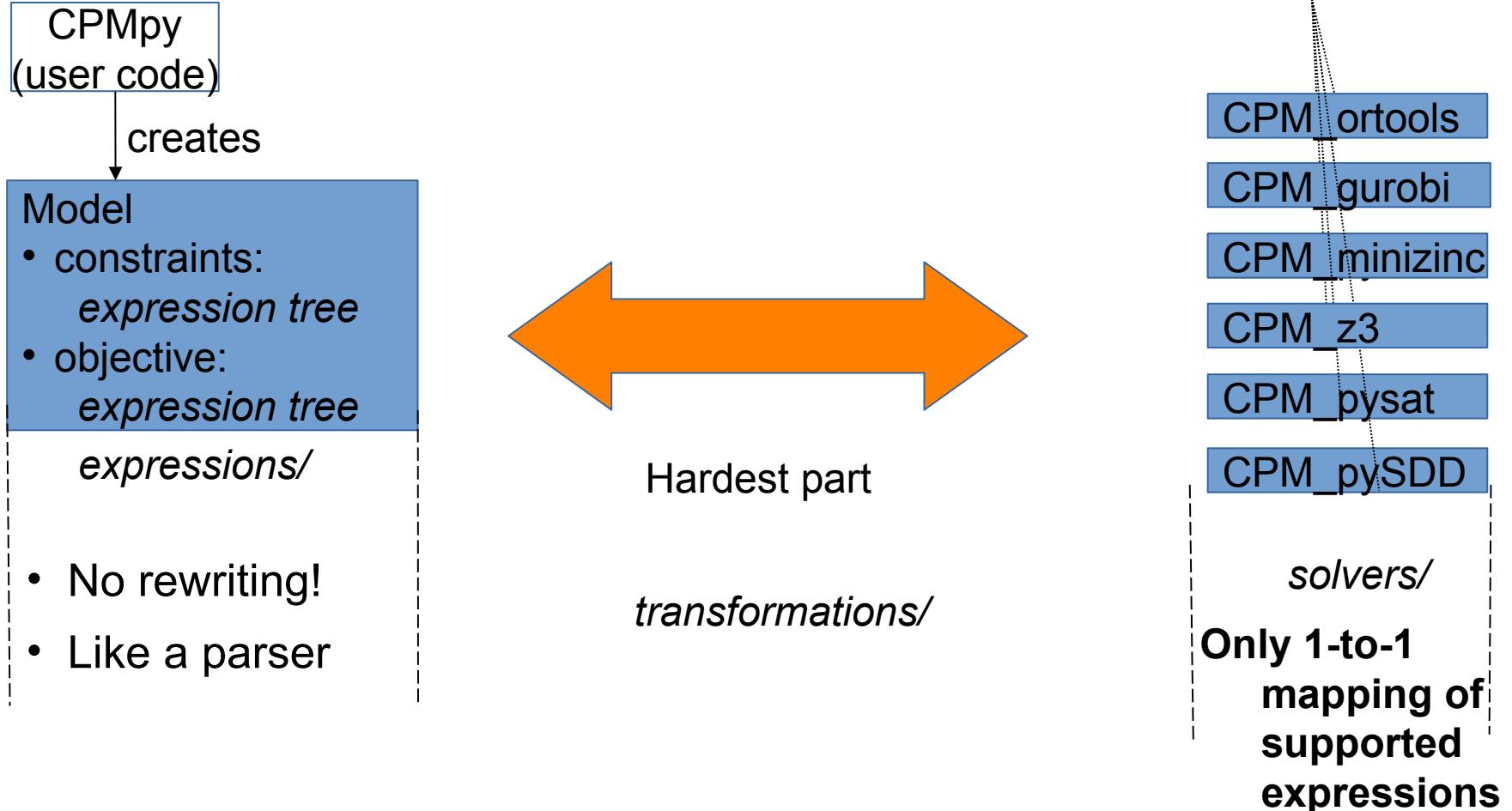
Conversational Human-Aware Technology for Optimisation



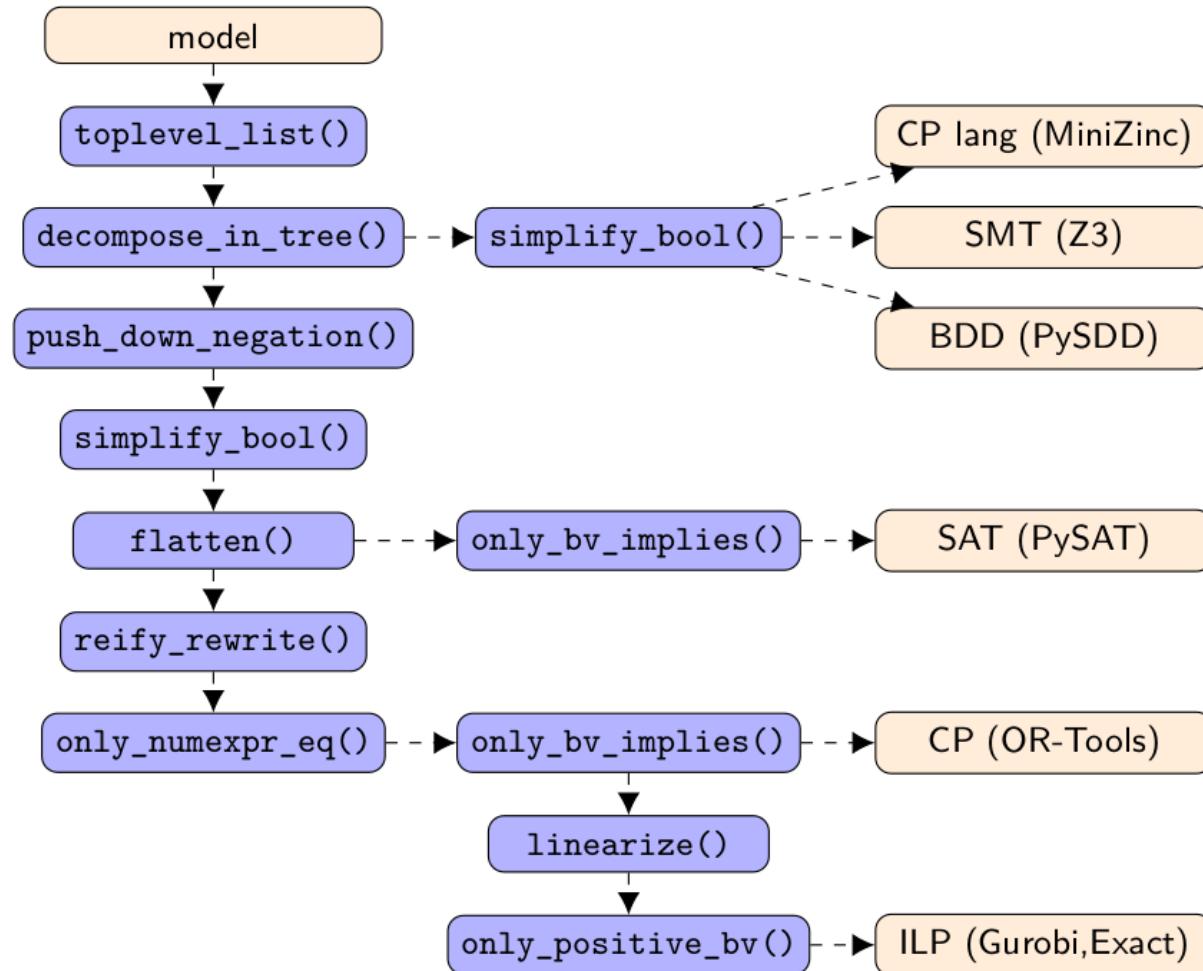
What would the ideal Constraint Solving system be?

- Efficient repeated solving
 - => Incremental
- Use CP/SAT/MIP or any combination
 - => solver independent and multi-solver
- Easy integration with Machine Learning
 - => Python and numpy arrays

Design



Transformations (overview)



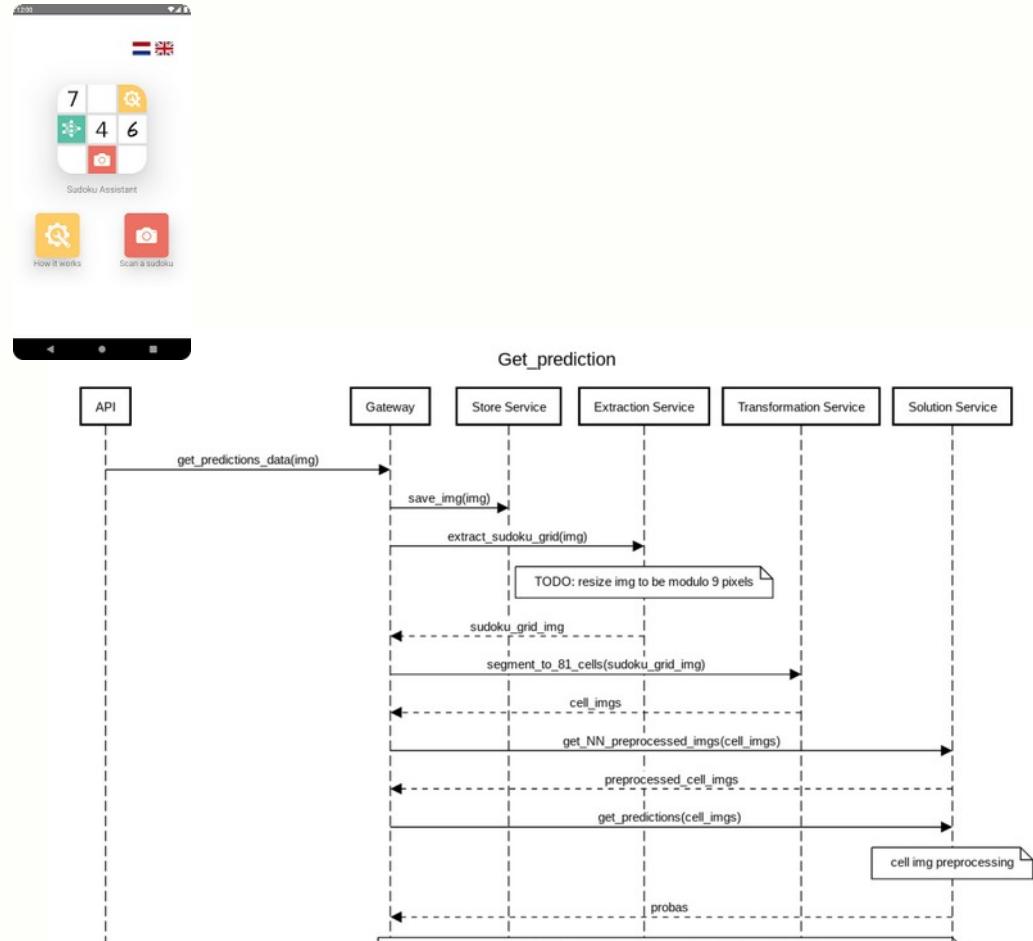
Implementation: integration

Frontend:

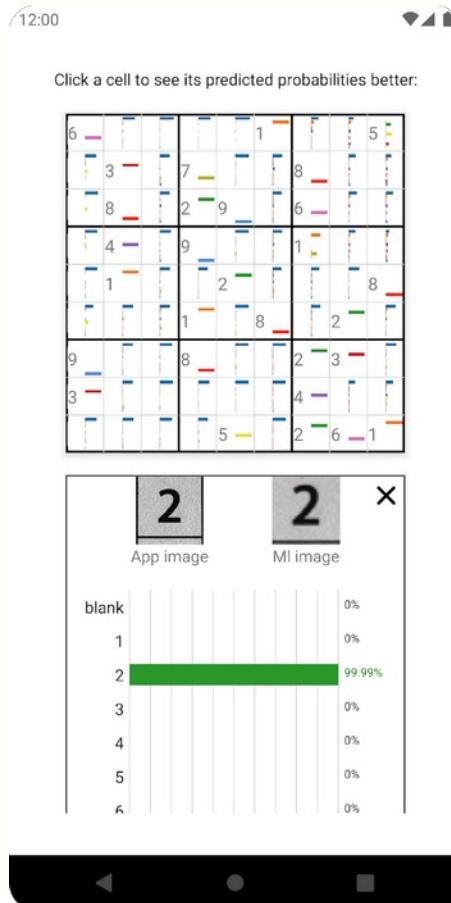
- React-native
- Only displays results

Backend:

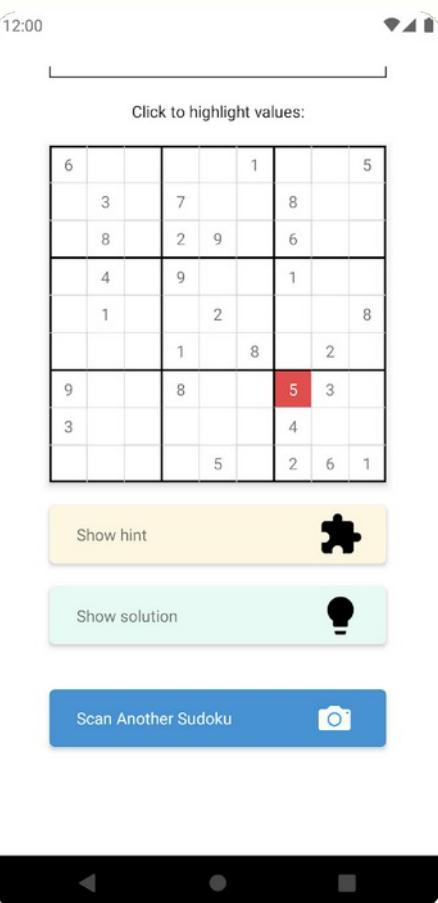
- FastAPI (Python)
- NN Service (PyTorch)
- Solver Service (CPMpy)
- Preloading, caching, hyperparameter optimisation...



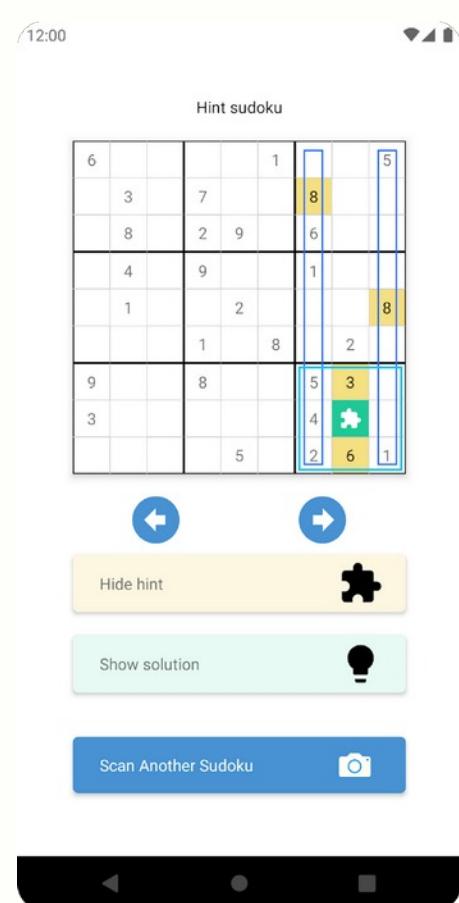
Responsiveness?



Avg ~0.1 s



Avg ~1.6 s (dev 3.2s)



Avg ~0.9 s (dev 1.2s)

Algorithm Configuration

Motivation

Constraint solvers support many hyper-parameters:

- ▶ settings for heuristics, pre-solve parameters...

Assuming similar parameters work well across instances of similar problems,

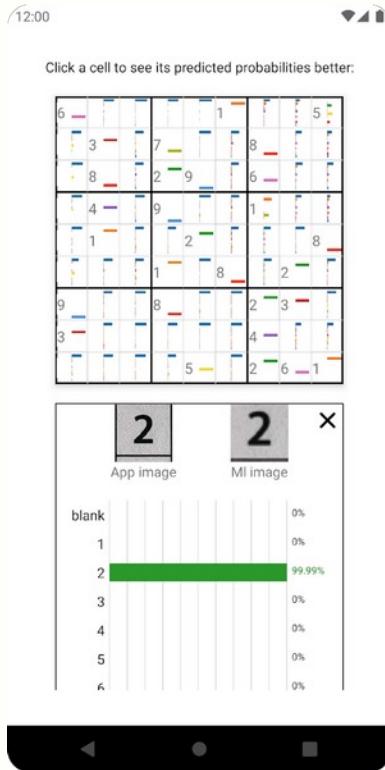
- ▶ Tune constraint solver on one instance and re-use configuration

Very easy to do in CPMpy because of direct solver access (checkout our examples!)

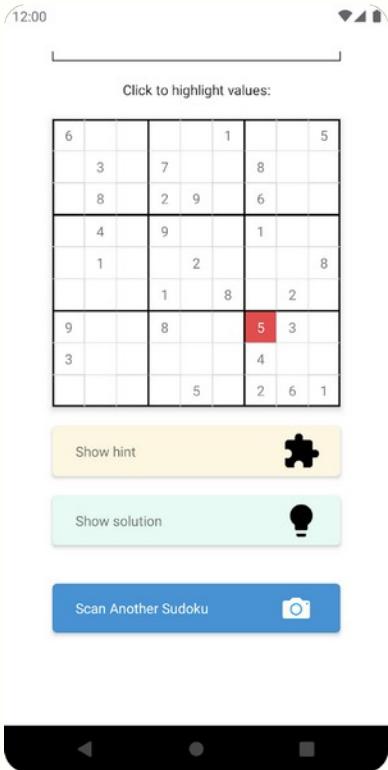
```
model.solve(  
    cp_model_probing_level = 2,  
    preferred_variable_order = 1  
    symmetry_level = 2  
    search_branching = 5,  
    use_erwa_heuristic = True  
)
```

Naive approach: full grid search on entire hyper-parameter space

Responsiveness?

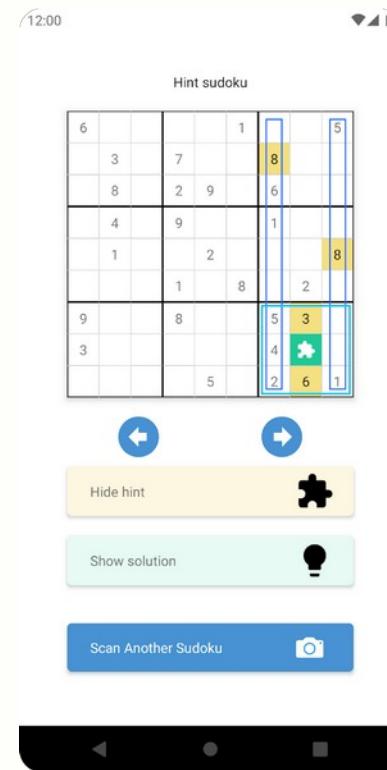


Avg ~0.1 s



Avg ~1.6 s (dev 3.2s)

NOT TUNED



Avg ~0.9 s (dev 1.2s)

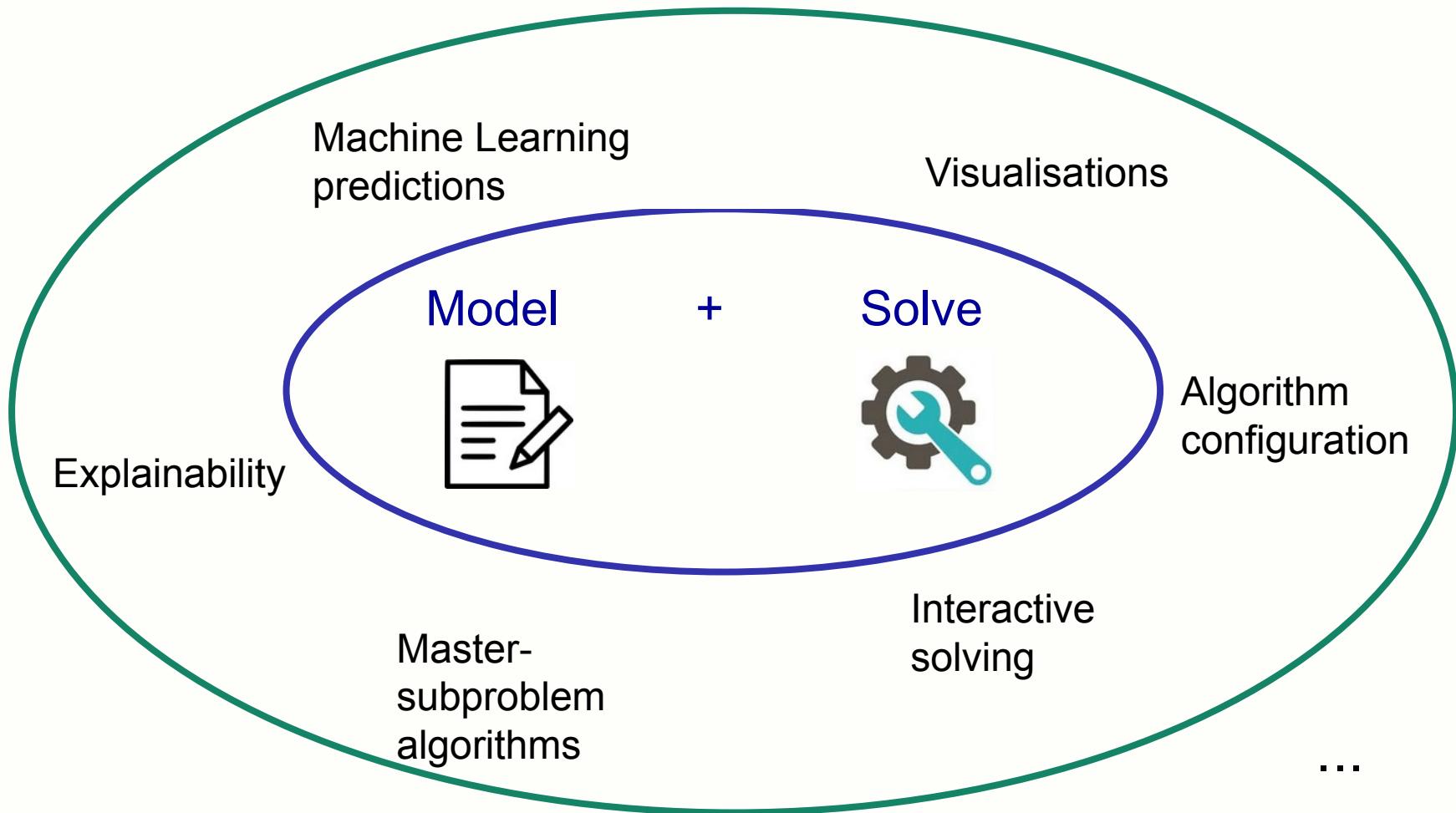
TUNED
(was much more)

Other relevant topics:

- Can we integrate instance-specific algorithm configuration?
- When to use which solver/transformations?
- Can we learn explanation preferences?
- Can we learn the constraints from data?
- Can we train an ML model based on the quality after solving (decision-focussed learning)?
- Can we explain across the CP & ML model?
- ...

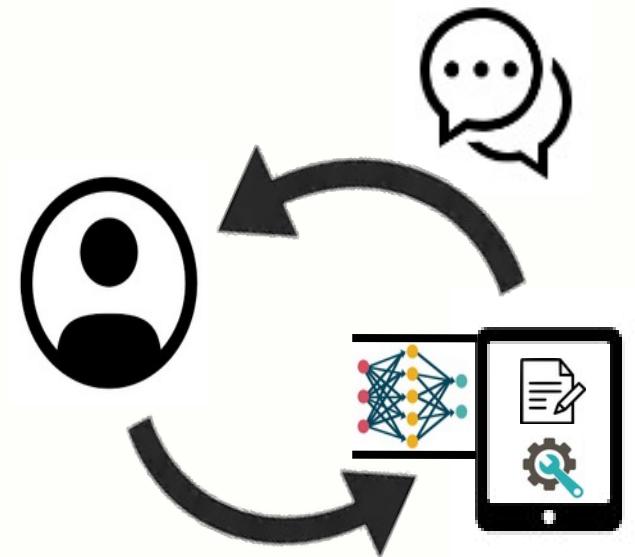
Conclusion

Wider view: integration



Bigger picture

- Learning implicit user preferences
- Learning from the environment
- Explaining constraint solving
- Stateful interaction



Sudoku Assistant as integration example

Needed all of:

- Easy integration with Machine Learning libraries
=> Python and numpy arrays
- Efficient repeated solving
=> Incremental
- Use CP/SAT/MIP or any combination
=> solver independent and multi-solver
- Also parameter tuning, visualisations, web service deployment, etc