
Alternative Machine Learning

Methods for Constraint Acquisition

Steve Prestwich UCC

This material is based upon works supported by the Science
Foundation Ireland CONFIRM Centre for Smart Manufacturing,

Research Code 16/RC/3918. We would also like to acknowledge
the support of the Science Foundation Ireland under Grant No.

12/RC/2289-P2 which is co-funded under the European
Regional Development Fund.

Constraint programming

CP is the area of AI concerned with modelling and solv-

ing combinatorial problems, with rich modelling lan-

guages.

A CSP has a set of problem variables, each with a

domain of possible values, and a network of constraints

imposed on subsets of the variables. CSPs are NP-

complete problems.

A constraint is a relationship that must be satisfied by

any solution, though it can be violated by non-solutions.

1

Constraint acquisition

Modelling a CSP requires knowledge and experience,

and can be difficult even for experts: the modelling

bottleneck.

CA attempts to avoid the bottleneck by automating

modelling.

It’s a possible path to the Holy Grail.

2

In CA we have a set of labelled instances, and con-

straint candidates (the bias). The labels are positive

for solutions and (often) negative for non-solutions.

We wish to learn a subset S of the bias such that pos-

itive instances satisfy all S while negative instances (if

we have any) do not.

(Some approaches also require that every non-solution

violates at least 1 learned constraint.)

3

CA is usually based on some form of Machine Learning

(ML), typically Inductive Logic Programming or Version

Space Learning.

I’ve been exploring the use of alternative ML methods

for CA, and Gene asked me to summarise the results.

4

Running example

A Latin square is similar to a Sudoku as a CSP, but

without boxes.

It’s an N ×N square of integers in the range {1, . . . , N}
s.t. no integer occurs more than once in any row or

column.

Used for CA in several papers with N = 10. Bias has

14,850 {≤,≥, 6=} candidates, with 900 of the disequal-

ities to be learned.

I’ll skip ConAcq, QuAcq etc to look at alternative ML

approaches...

5

Supervised learning

This was presented at PTHG’19 and IJCAI-DSO’19

and published here:

S. D. Prestwich, E. C. Freuder,

B. O’Sullivan, D. Browne.

Classifier-Based Constraint Acquisition.

Annals of Mathematics and Artificial Intelligence

89:655–674, 2021.

6

For training data containing positive and negative in-

stances, we proposed a 2-step process called ClassAcq:

• train a classifier to discriminate between solutions

& failures

• transform the trained classifier to a constraint model

7

Any CA method based on a classifier should inherit its

characteristics.

Classifiers exist for mixed data types, and large or small

/ imbalanced / noisy / low- or high-dimensional datasets.

So ClassAcq provides a diverse toolbox for CA.

Not a completely new idea! Several researchers have

transformed decision trees, random forests & neural

networks into CP or MIP models [Lombardi, Milano

& Bartolini; Pawlak & Krawiec] — but not expressly

for CA, and this work is rarely referenced in the CA

literature.
8

BayesAcq

As a ClassAcq experiment we used a Bernoulli naive

Bayes classifier, which is fast and can handle noisy data

(with errors): both nice properties for CA.

Given a vector ~x = 〈x1, . . . , xN〉 of values xi to be classi-

fied, Naive Bayes classifiers usually select a class using

the maximum a posteriori rule to choose the most likely

class:

argmaxk

Pr(Ck)
N∏
i=1

Pr(xi|Ck)

 (1)

This rule selects the class k that is the mode of the

posterior distribution.

9

To train the classifier we estimate the prior class proba-

bilities Pr(Ck), and the conditional probabilities Pr(xi|Ck)

of observing xi in class Ck: we simply count values in

the dataset, so training is fast and scalable.

An assumption is that the xi are values of independent

variables or features. Although this is often unrealis-

tic, Naive Bayes classifiers often give surprisingly good

results, are provably optimal for some cases, and are

a standard tool for some applications. They are also

robust under noise and errors, because corrupted data

can be neutralised by sufficient correct data.

10

The NB assumption of independence between variables

seems to make them unsuitable for learning constraints

between variables, but we can combine tuples of vari-

ables into single features: “constraints as features” (a

standard trick).

For CA the classes are k ∈ {+,−}, and an instance is

in + (a solution) iff:

∏
j

Pr(cj = 1|C−)

Pr(cj = 1|C+)
<

Pr(C+)

Pr(C−)

11

We assume an uninformed prior Pr(C+) = Pr(C−) so

that an instance is classed as a solution iff:∏
j

Pr(cj = 1|C−)

Pr(cj = 1|C+)
< 1 or

∑
j

ln

(
Pr(cj = 1|C−)

Pr(cj = 1|C+)

)
< 0

From this we can derive a linear constraint∑
j

cj ln

(
Pr(cj = 1|C−)

Pr(cj = 1|C+)

)
< 0

that mimics a Naive Bayes classifier given cj values.

12

Given any previously unseen instance, we can compute

the cj then test the linear constraint; if it is satisfied

then the instance is classified as a solution; if it is vio-

lated the instance is classified as a non-solution.

But a single linear constraint on binary variables is

not the constraint model we desire. Instead we want

to learn which candidates j (expressed on the original

problem variables) should be in the model.

13

Fortunately, in practice the coefficients of cj for actual
constraints are quite large positive values, while those
for non-target candidates have positive or negative val-
ues close to 0. So we force cj = 0 for candidates j

with large coefficients, and ignore all other candidates
j because there is insufficient evidence that they are
constraints: a heuristic that seems to work well.

We can now discard Naive Bayes and the cj leaving
a simple CA method: for each candidate j compute
Kj = Pr(viol(j)|C−)/Pr(viol(j)|C+) where viol(j) de-
notes violation of candidate j. If Kj is greater than
some threshold κ then learn candidate j as a constraint,
otherwise ignore it.

14

To prevent zero probabilities and avoid infinities we use

additive smoothing:

Kj =
n(viol(j), C−) + α

n(viol(j), C+) + α

where n(viol(j), C) denotes the number of instances in

class C that violate candidate j, and α > 0 is a smooth-

ing parameter.

15

Choosing hyperparameters

We choose α = 0.01: a common choice in additive

smoothing. The Kj can be viewed as Bayes factors

and we measured them in Turing’s decibans:

Kj decibans weight of evidence
< 100 0 negative

100–101/2 0–5 barely worth mentioning
101/2–101 5–10 substantial
101–103/2 10–15 strong
103/2–102 15–20 very strong
> 102 >20 decisive

16

In summary, BayesAcq computes Kj for each candi-

date j, and accept j as a constraint iff Kj > κ for some

chosen κ (and α).

On our running example, we used 5000 solutions and

5000 failures. Disequalities that should be learned had

decisive factors, while all other candidates were less

than substantial, and it learned the correct candidates

in 0.54 seconds.

Similar results for Sudoku, Golomb rulers and random

3-SAT.

17

Despite its approximations and NB’s incorrect indepen-
dence assumption, BayesAcq gives accurate results on
common benchmarks, and inherits NB’s properties:

Speed On a Golomb ruler of length 12 it took 0.07
seconds, while other methods took minutes or hours.

Scalability Most problems in the literature have a bias
with tens of thousands of candidates. BayesAcq learned
the 50 clauses for a random 3-SAT problem with a bias
of 1.3B candidates, in 16,259 seconds.

Robustness In experiments BayesAcq gave correct re-
sults with up to 10% misclassified instances (though
this required some hyperparameter tuning).

18

A sequential approach

Still under the heading of supervised learning, another
CA method published here:

S. D. Prestwich.
Robust Constraint Acquisition by
Sequential Analysis, ECAI 2020.

BayesAcq does something like Bayesian hypothesis test-
ing, so why not use a faster method?

Sequential analysis is a form of hypothesis testing in
which a stopping rule is used to stop sampling as soon
as the accumulated evidence is sufficient to accept or
reject the hypothesis.

19

This has obvious benefits for patients in clinical trial,

which can be halted as soon as it becomes obvious

that an experimental treatment is harmful, or that one

treatment is much more successful than another.

Another application is in manufacturing, where product

lots are tested for defects: lots should be accepted or

rejected after as few tests as possible, to save time and

costs.

A similar approach called Banburismus was developed

independently by Turing to speed up decryption. There

are many more applications in the literature.

20

In CA the stopping rule might enable us to avoid testing

a candidate against every training instance.

We use Wald’s Sequential Probability Ratio Test (SPRT).

Eg products are sampled and tested one by one (m =

1,2, . . .), counting the number dm of defects found so

far. If at any point dm < Am the lot is accepted and

the algorithm halts, where Am is an acceptance num-

ber . On the other hand, if at any point dm > Rm the

lot is rejected and the algorithm halts, where Rm is a

rejection number . Otherwise the algorithm continues

indefinitely.

21

d

m

A

accept

R

4 parameters specify the sampling plan: p0 is the defect

probability below which we prefer acceptance, p1 is the

defect probability above which we prefer rejection, α

controls the type I and β the type II error rate.

22

The SeqAcq method has only 2 parameters (A,R), one

of which (R) can be set to 1 if we expect no errors in

the data:

SeqAcq(R,A)
for each candidate c in the bias
r ← 0 a← 0
repeat

randomly choose an instance e without replacement
(if impossible then reject c as inconclusive)

if c is violated by e
if the instance is a solution
r ← r + 1
if r ≥ R reject c as a constraint
a← a+ 1
if a ≥ A accept c as a constraint

23

Here’s an example where a candidate is violated by 2
sampled solutions. These cause two vertical moves
(horizontal moves correspond to non-solution violations)
which lead to rejection because R = 2. But if A non-
solution violations were observed first then c would be
accepted as a constraint:

a

R=2

−1

A=4

reject

r

24

Truncated SPRT

If there aren’t enough violations of a candidate in the

dataset (eg all-equal) then it will be rejected as in-

conclusive. To handle these cases we modify SeqAcq

slightly: accept inconclusive candidates for which r = 0

and a > 0.

SPRT is often modified to handle inconclusive cases,

yielding a Truncated SPRT that accepts or rejects them

on the basis of a limited number of samples.

25

Results

SeqAcq is also robust and scalable.

It also gives correct results on Latin squares but 10×
faster than BayesAcq. Similarly for Sudoku.

On the large 3-SAT example it’s about 200 times faster,

processing the bias of 1.3B candidates in 78 seconds.

26

Semi-supervised learning

Continuing the tour of ML areas, semi-supervised learn-
ing might be useful for CA. Suppose we have a lot of
training instances but only a few are labelled as pos-
itive or negative. This might be the case in datasets
that were scraped from the Web. Can we use the la-
belled instances and also benefit from the unlabelled
instances?

A possibility is to improve CA by using transduction to
label the unlabelled instances, giving a large labelled
dataset almost for free. (Presented at PTHG’20.)

I experimented with this idea using a semi-supervised
naive Bayes classifier based on the Expectation Max-
imisation (EM) algorithm.

27

Unfortunately the results were poor: each EM iteration

increased the classification error.

I also tried using NB to generate binary labels where

this could be done with high confidence, leaving other

instances unlabeled; but even when transduction was

quite accurate, CA on the large relabelled data was

usually less accurate than on the small labelled data.

Other researchers have also found EM to make learning

less accurate, so the result is perhaps unsurprising. A

possible explanation is that our CA data violated the

assumptions on which transduction relies.

28

In fact it is impossible to guarantee that the introduc-

tion of unlabelled data will not degrade performance:

J. E. van Engelen, H. H. Hoos.

A Survey on Semi-Supervised Learning.

Machine Learning 109:373–440, 2020.

Perhaps someone else can get this idea to work?

But semi-supervised learning might be unnecessary...

29

Unsupervised learning

What if we have no labelled instances? Can we learn a

constraint model from a dataset of unlabelled instances

(a set of total variable assignments that may or may

not be solutions)?

Perhaps surprisingly: yes!

S. D. Prestwich.

Unsupervised Constraint Acquisition.

ICTAI 2021.

30

Motivation

In many ML applications, unsupervised learning is the

key to scalability. Some experts believe that it’s the

future of AI:

K. Hao.

The AI Technique That Could Imbue

Machines With the Ability to Reason.

MIT Technology Review, 2019.

31

Finding unsupervised CA methods was proposed as a

research challenge by Barry O’Sullivan over 10 years

ago.

All current CA methods use supervised learning and

need data prepared by humans. Meeting this challenge

could lead to automated data collection and hence au-

tomated CA.

So unsupervised CA could be very useful.

32

Though CA can remove the modelling bottleneck, it

introduces what is sometimes called a data collection

bottleneck.

This is a serious drawback. Eg to learn a standard

Sudoku puzzle, most methods require labelled datasets

of about 10,000 instances. Providing these requires

significant human effort.

For some applications there might be no known solu-

tions, or they might be difficult or expensive to obtain,

or we might not know what a non-solution looks like.

33

Intuition

Suppose we have training data for 10×10 Latin squares,

containing some solutions and some non-solutions —

but we don’t know which are which, nor how many

there are.

Any random variable assignment is unlikely to be a solu-

tion, because a Latin square is quite a tightly-constrained

CSP. So any solutions must have been artificially added,

with all Latin square constraints satisfied.

Intuitively, shouldn’t target constraints be more often

satisfied than non-targets in such a dataset?

34

Also consider 9 × 9 Sudoku. There are ≈ 6.7 × 1021

solutions and 981 possible matrices, giving the vanish-

ingly small probability 3×10−56 of finding a solution in

a purely random dataset.

So any dataset for Sudoku that contains solutions sat-

isfies the constraints more often than a random set of

instances.

35

Target constraints should be satisfied more often than

would be expected, given the distribution of values.

This might be used to distinguish them from other can-

didates that should not be learned.

But are real-world datasets like this? How often should

we expect constraints to be satisfied? For inspiration

we turn to Data Mining...

36

Association rule mining

I proposed a method called MineAcq based on ARM,
a form of unsupervised learning and one of the main
areas of data mining.

ARM extracts interesting correlations, patterns and as-
sociations among items in databases.

Eg for a set of items I = {milk,bread,butter,beer,diapers}
a rule is

{butter,bread} ⇒ {milk}

ARM has many application areas: marketing, customer
relationship management, medical diagnosis, census data,
protein sequences.

37

To learn rules we can test every possible rule (but there

are shortcuts) and learn those that are interesting under

some measure, eg support of X ⇒ Y

p(XY)

interest (or lift)

p(XY)

p(X) p(Y)

conviction

p(X) p(Ȳ)

p(XȲ)

38

MineAcq tests each candidate using a measure of in-

terestingness, and learn those that pass the test.

But constraints are not association rules: they (usually)

have no antecedent or consequent. So how to do this?

A measure that doesn’t rely on these is

1− E[p(c(~x))]

1− p(c(~x))

ie the ratio of the expected and observed violation prob-

abilities. This should be larger than expected for target

constraints.
39

Applied to a rule X ⇒ Y it is equivalent to

p(X) p(Ȳ)

p(XȲ)

which is the conviction V . We learn candidate c if

V (c) ≥ τ .

But conviction has a drawback: a candidate that’s al-

most never violated has low V .

40

So we also learn any candidates that are almost never

violated, using the measure:

1− p(c(~x))

ie violation probability. In ARM this is:

p(XȲ)

ie the Ralambondrainy measure R. We learn c if R(c) ≤
ρ where ρ is another user-defined threshold close to 0

(I use ρ = 0.01).

41

Results

On standard benchmarks (Sudoku, Latin square, Golomb

rulers) and a new one (learning partial orders) MineAcq

learned correct models more quickly than most meth-

ods, beaten only by SeqAcq and BayesAcq.

It often needs more instances than supervised methods.

But this is quite common for unsupervised learning, and

it’s more than compensated for by the lack of reliance

on labels.

42

Related approaches

Similar approaches to MineAcq have been applied to
generating constraints for specific applications: con-
straint mining.

In process mining event logs are mined for useful infor-
mation, and this has been used to learn constraints for
scheduling problems.

A version of the Apriori algorithm has been designed
to learn certain constraints for enterprise security man-
agement.

But these are not general approaches to unsupervised
CA.

43

Some CA methods use positive-only data (Model Seeker,

Tacle, Valiant’s method), some can also use negative-

only (QuAcq), most use mixed (Conacq, Matchmaker,

SeqAcq), a few can use noisy data (SeqAcq, BayesAcq).

MineAcq can use all these, and without labels.

Integrating CP and Data Mining has been an active

area of research for several years, but most work has

concentrated on the use of constraints in mining —

MineAcq applies mining to CP.

44

Symbolic ML

Inductive logic programming & version space learning

can be seen as a symbolic form of ML. Are there other

forms that can be used for CA?

I found an application of symbolic classifiers. This work

was presented at the IJCAI-DSO’22 workshop (“Ex-

trapolating Constraint Networks by Symbolic Classifi-

cation”).

45

Most CA methods learn CSPs of a certain size from

instances of that size.

A few can learn a CSP from solutions of other sizes, or

learn a generalised CSP for all sizes: harder but more

useful.

Model Seeker can extrapolate from input solutions of

more than one size and learn a CSP of a different size.

ILP can learn a generalised constraint model. (Prob-

lem size is not the only kind of parameter that can be

generalised.)

46

A new approach to learning a CSP: “extrapolation”

from learned (or hand-coded) CSPs of other sizes.

The training CSPs can be learned by any convenient

CA method, so we can potentially handle positive-only,

negative-only, positive-negative, noisy or unlabelled data.

47

Extrapolation by classification

Recall the N × N Latin square, a CSP with variables

vi,j ∈ {1, . . . , N} (i, j = 1, . . . , N) and disequality con-

straints vi,j 6= vi′,j′ where i = i′ or j = j′.

Suppose we already have CSPs for N = 2,3,5. Can we

learn a generator that, given a new value of N , outputs

the correct constraints?

48

Bias for a fixed value of N : all disequalities vi,j 6= vi′,j′

whose variable indices satisfy (i, j) < (i′, j′).

The subset with either i = i′ or j = j′ are to be learned:

call these class 1 and the rest class 0.

Why not train a classifier to learn how to distinguish

between the two classes, using the classified bias as a

training dataset?

49

We expect to be given similar information for several

different problem sizes. So we include problem size,

and any other relevant parameters that we know of, in

the training instances.

Eg for Latin squares the training data are vectors of

values 〈N, i, j, i′, j′〉 where N is size and vi,j 6= vi′,j′ is the

candidate.

It will contain some class 1 examples such as 〈3,0,0,1,2〉
(because i = i′) and 〈3,0,2,1,1〉 (because j = j′), and

class 0 examples such as 〈3,0,1,1,2〉 (which satisfy nei-

ther) — see paper for classified bias example.

50

We have 342 labelled instances for N = 2,3,5. Train a

binary classifier to discriminate between classes 0 and

1. If no overfitting occurs then the trained classifier

can be used to select the correct constraints from the

bias of any Latin square size.

(For a constraint problem with more than one family

of constraints — eg disequalities and inequalities — we

treat the families separately, each with its own classified

bias.)

51

This “bias classification” approach has the advantage

that it transforms a problem with several different-sized

constraint models into fixed-size classification problems,

one per constraint type.

It works purely on constants and variable indices and

performs no reasoning on constraint properties, so it

can also be applied to SAT & ILP...

52

Degenerate cases

There are two special cases:

• class 1 empty, eg if we have a CA system containing

a library of constraints (most will be irrelevant)

• class 0 empty, eg N-queens contains all possible dis-

equalities

Both cases cause some classifiers to return an error

message.

53

We test for these cases before applying a classifier: if all

training instances are in class 1, or all in class 0, then

we assume that the same will be true for all unseen

instances.

So for any family of candidates, the result of training

is either a memo that class 1 is empty, or a memo that

class 0 is empty, or a trained classifier.

54

Which classifier?

Classification is a fundamental ML task that has re-

cieved a great deal of attention, and a variety of meth-

ods is available. We trained several on Latin square

data with sizes N = 2,3,5, then tested it on size 4

(interpolation) and all prime sizes up to 47 (extrapola-

tion).

Results: surprisingly poor! As N increases, KNN and

RF start to misclassify most candidates: by N = 47

they respectively misclassify 81% and 93% of all can-

didates. LIN, LR, SVM and MLP misclassify 4%–12%.

No classifier even managed to interpolate to N = 4.

55

Only RF managed to fit the training data correctly —

but it was the worst extrapolator so it overfitted.

Attempts at tuning numerical classifier hyperparame-

ters, the SVM kernel (polynomial, sigmoid, radial basis

function), the MLP architecture (number and size of

hidden layers) and activation functions (sigmoid and

RelU) yielded no significant improvement.

LIN and LR were the best extrapolators, perhaps be-

cause their simplicity caused less overfitting.

56

Why do such diverse and successful classifiers all fail

hopelessly at this small binary classification task?

Conjecture: because the class 1 instances do not oc-

cupy a connected region of the feature space, or even

one with a few clusters.

This looks bad for the bias classification approach. For-

tunately, there is a solution...

57

Symbolic classification

We seem to need a classifier that can learn to separate
classes 0 and 1 via simple mathematical relationships on
variable indices etc. An interesting possibility is a sym-
bolic classifier which learns a mathematical function to
separate classes.

Symbolic regression is a well-known offshoot of GP and
can be used to explain datasets, but symbolic classi-
fication has been relatively neglected. I use gplearn
(Scikit-Learn, Google Colaboratory).

gplearn uses GP to evolve a function that fits the train-
ing data: class 1 is indicated by a positive output and
class 0 by a negative.

58

gplearn worked perfectly on Latin squares! It even

worked given only 1 training example (N = 5).

I call this method for CA by eXtrapolation XAcq (only

a research prototype at present).

Testing on other examples...

59

Latin squares with global constraints

To be useful, XAcq should be able to handle global

constraints such as alldifferent: eg for Latin squares,

an alldifferent constraint on each row and column.

Handling high-arity global constraints is difficult for most

CA methods because there are too many possibilities,

and the bias becomes exponentially large. Model Seeker

solves this by assuming that there is a lot of regular-

ity. We similarly assume that alldifferent constraints

will only be applied to rows and columns.

Latin square extrapolation then becomes degenerate

because all row and columns are constrained.
60

N-queens

We use a CSP with variables vi ∈ {1, . . . , N} (i = 1, . . . , N).

Row constraints are implicit in the model, and the col-

umn constraints (disequalities between variables) are a

degenerate case with empty class 0. So we need only

use the symbolic classifier to extrapolate the diagonal

constraints |vi − vj| 6= |i− j|.

XAcq successfully learns (N = 2,3,5 again) and extrap-

olates to bigger N (up to 47).

61

Golomb rulers

Suppose that specific CSPs have been learned for sev-

eral sizes, containing disequalities and quaternary con-

straints of the form |xi − xj| 6= |xi′ − xj′| (i < j, i′ < j′,
i < i′, j′ 6= k, k 6= k′).

All disequalities and all quaternary constraints are learned

in each example. So both are degenerate cases with

empty class 0.

Learning fixed-size Golomb ruler CSPs has been found

quite challenging, but their extrapolation is easy.

62

Magic squares

A magic square is a square of integers in the range

1, . . . , N with no two integers the same, and with each

row, column and main diagonal summing to the same

number M = N(N2 + 1)/2.

CSP for order N has variables vi,j ∈ {1, . . . , N2} (1 ≤
i, j ≤ N). They all take different values, and each row,

column and diagonal sums to the magic constant M

which is a function of the square size.

63

Suppose we have magic squares for N = 3,4,5 each

with a learned CSP. Regularity assumption: only sums

on rows, columns and diagonals are constrained.

I applied XAcq to rowsum constraints: colsum extrap-

olation problem is identical, and diagsum extrapolation

is degenerate. It extrapolated correctly.

64

BIBDs

5 values V,B,R,K, λ define the problem, but they are

not independent and it is common to specify only V,K, λ.

We can then calculate R = λ(V − 1)/(K − 1) and B =

V R/K.

Suppose we have learned CSPs for several instances,

but that we know nothing about BIBDs: we know V,B

because they are observable, but have not considered

R,K, λ and do not know their importance.

Then extrapolation will fail because the problem is un-

derspecified: no function exists that can predict R,K, λ

from V,B alone.

65

But if the ZAcq user notices that all row sum con-

straints use the same value R, that the column con-

straints all use the same value K, and that all dot

product constraints use the same value λ, s/he can

add these parameters as training data columns. If they

are not useful, we hope that gplearn will ignore them.

After training on parameters (6,10,5,3,2), (7,7,3,3,1),

(8,14,7,4,3), (9,12,4,3,1) and (10,15,6,4,2), XAcq ex-

trapolates correctly to (7,14,6,3,2), (9,24,8,3,2),

(10,15,6,4,2), (13,26,6,3,1) and (15,35,77,3).

66

Note

The extrapolated BIBD models tell us nothing about

the relationships between the 5 parameters: they allow

us to generate a CSP for any combination of values,

even (1,1,1,10,10) representing a nonsensical case with

more 1s per row than there are numbers per row.

But XAcq is not a theorem prover so this seems rea-

sonable.

67

An advantage: combining MineAcq with XAcq yields

the first known approach to learning CSPs of an unseen

size from unlabelled data.

A disadvantage: each specific CSP requires sufficient

instances for CA, whereas Model Seeker can learn from

a very small number of instances.

(Model Seeker aims to generate efficient and non-redundant

CSPs while XAcq and most other methods do not.)

68

Conclusion & future work

ML is a rich research area with many ideas that can be

applied to CA.

Can reinforcement learning be used for CA? Gene sug-

gested this but I can’t see a way.

Transfer learning? Model Seeker already does some-

thing like this, but using human expertise instead of

ML.

I’m working with Gregory Provan & Samaksh Chandra

on CA as seq2seq learning via transformers.

69

Notes on Model Seeker

In some ways it’s still the SOTA!

• Often requires only a few solutions (or just 1).

• It’s been tested on hundreds of problems.

• It can handle problems that are larger than usual in

the literature, some with thousands of variables.

70

• It can learn high-level models containing a wide

range of global constraints. These can not be han-

dled by most methods: exponentially large bias.

• It’s fast, often taking only seconds and at most a

few minutes.

71

But it has limitations:

• It assumes that the desired constraint model has
a regular structure that can be represented as a
conjunctions of sets of identical constraints.

• It applies heuristics to exclude atypical usages of
global constraints, to use stronger and more pop-
ular constraints, to eliminate redundant and domi-
nated constraints, and to avoid trivial and uninter-
esting constraints. This might break down on less
structured or on atypical applications.

72

• It requires human expertise to provide necessary in-

formation, which might turn out to be difficult on

new applications.

It might be viewed as an expert system approach, with

similar brittleness.

If ML-based approaches can catch up with Model Seeker,

the results could be impressive!

73

