Alternative Machine Learning

Methods for Constraint Acquisition

Steve Prestwich UCC

This material is based upon works supported by the Science
Foundation Ireland CONFIRM Centre for Smart Manufacturing,
Research Code 16/RC/3918. We would also like to acknowledge
the support of the Science Foundation Ireland under Grant No.

12/RC/2289-P2 which is co-funded under the European
Regional Development Fund.

Constraint programming

CP is the area of Al concerned with modelling and solv-
ing combinatorial problems, with rich modelling lan-
guages.

A CSP has a set of problem variables, each with a
domain of possible values, and a network of constraints
imposed on subsets of the variables. CSPs are NP-
complete problems.

A constraint is a relationship that must be satisfied by
any solution, though it can be violated by non-solutions.

1

Constraint acquisition

Modelling a CSP requires knowledge and experience,
and can be difficult even for experts: the modelling

bottleneck.

CA attempts to avoid the bottleneck by automating
modelling.

It's a possible path to the Holy Grail.

In CA we have a set of labelled instances, and con-
straint candidates (the bias). The labels are positive
for solutions and (often) negative for non-solutions.

We wish to learn a subset S of the bias such that pos-
itive instances satisfy all S while negative instances (if
we have any) do not.

(Some approaches also require that every non-solution
violates at least 1 learned constraint.)

CA is usually based on some form of Machine Learning
(ML), typically Inductive Logic Programming or Version
Space Learning.

I've been exploring the use of alternative ML methods
for CA, and Gene asked me to summarise the results.

Running example

A Latin square is similar to a Sudoku as a CSP, but
without boxes.

It's an N x N square of integers in the range {1,..., N}
S.t. no integer occurs more than once in any row or
column.

Used for CA in several papers with N = 10. Bias has

14,850 {<, >,#} candidates, with 900 of the disequal-
ities to be learned.

I'll skip ConAcq, QUACcCq etc to look at alternative ML
approaches...

Supervised learning

This was presented at PTHG'19 and IJCAI-DSO’'19
and published here:

S. D. Prestwich, E. C. Freuder,

B. O'Sullivan, D. Browne.

Classifier-Based Constraint Acquisition.

Annals of Mathematics and Artificial Intelligence
89:655—674, 2021.

For training data containing positive and negative in-
stances, we proposed a 2-step process called ClassAcq:

e train a classifier to discriminate between solutions
& failures

e transform the trained classifier to a constraint model

Any CA method based on a classifier should inherit its
characteristics.

Classifiers exist for mixed data types, and large or small
/ imbalanced / noisy / low- or high-dimensional datasets.
So ClassAcq provides a diverse toolbox for CA.

Not a completely new idea! Several researchers have
transformed decision trees, random forests & neural
networks into CP or MIP models [Lombardi, Milano
& Bartolini; Pawlak & Krawiec] — but not expressly
for CA, and this work is rarely referenced in the CA
literature.

BayesAcg

As a ClassAcq experiment we used a Bernoulli naive
Bayes classifier, which is fast and can handle noisy data
(with errors): both nice properties for CA.

Given a vector £ = (x1,...,x) Of values x; to be classi-
fied, Naive Bayes classifiers usually select a class using
the maximum a posteriori rule to choose the most likely
class:

N
argmaxy, (Pr(Ck) 11 Pr(:r;z-|Ck)) (1)

1=1
This rule selects the class k£ that is the mode of the
posterior distribution.

To train the classifier we estimate the prior class proba-
bilities Pr(C}), and the conditional probabilities Pr(x;|C}.)
of observing z; in class C}: we simply count values in
the dataset, so training is fast and scalable.

An assumption is that the x; are values of independent
variables or features. Although this is often unrealis-
tic, Naive Bayes classifiers often give surprisingly good
results, are provably optimal for some cases, and are
a standard tool for some applications. They are also
robust under noise and errors, because corrupted data
can be neutralised by sufficient correct data.

10

The NB assumption of independence between variables
seems to make them unsuitable for learning constraints
between variables, but we can combine tuples of vari-
ables into single features: ‘“constraints as features” (a
standard trick).

For CA the classes are k£ € {4+, —}, and an instance is
in 4+ (a solution) iff:

Pr(c; =1|C-) Pr(Cy)

E[Pr(cj = 1|C}) < Pr(C_)

11

We assume an uninformed prior Pr(Cy) = Pr(C_-) so
that an instance is classed as a solution iff:

11 (¢; |)<1 or ZIn((¢; |)><O
] PI’(Cj — 1|C_|_) J Pr(cj = 1|C_|_)
From this we can derive a linear constraint

Pr(c; = 1|C-)
%:Cj " (Pr(cj- = 1|C+)> <0

that mimics a Naive Bayes classifier given C; values.

12

Given any previously unseen instance, we can compute
the ¢; then test the linear constraint; if it is satisfied
then the instance is classified as a solution; if it is vio-
lated the instance is classified as a non-solution.

But a single linear constraint on binary variables is
not the constraint model we desire. Instead we want
to learn which candidates j (expressed on the original
problem variables) should be in the model.

13

Fortunately, in practice the coefficients of ¢; for actual
constraints are quite large positive values, while those
for non-target candidates have positive or negative val-
ues close to 0. 5o we force ¢; = 0 for candidates j
with large coefficients, and ignore all other candidates
7 because there is insufficient evidence that they are
constraints: a heuristic that seems to work well.

We can now discard Naive Bayes and the ¢; leaving
a simple CA method: for each candidate 3 compute
K; = Pr(viol(j)|C-)/Pr(viol(j)|C4+) where viol(j) de-
notes violation of candidate j. If K, is greater than
some threshold « then learn candidate 5 as a constraint,
otherwise ignore it.

14

To prevent zero probabilities and avoid infinities we use
additive smoothing:

_ nviol(;),C-) 4+«
7 n(viol(5),Cy) +a
where n(viol(j),C) denotes the number of instances in

class C' that violate candidate 5, and a > 0 is a smooth-
ing parameter.

15

Choosing hyperparameters

We choose a = 0.01: a common choice in additive
smoothing. The K; can be viewed as Bayes factors
and we measured them in Turing's decibans:

K; decibans | weight of evidence
< 10Y 0 negative
100-101/2 0-5 barely worth mentioning
101/2-101 | 5-10 | substantial
101-103/2| 10-15 | strong
103/2-102 | 15-20 | very strong

> 102 >20 decisive

16

In summary, BayesAcq computes Kj for each candi-
date j, and accept j as a constraint iff K; > x for some
chosen k (and «).

On our running example, we used 5000 solutions and
5000 failures. Disequalities that should be learned had
decisive factors, while all other candidates were less
than substantial, and it learned the correct candidates
in 0.54 seconds.

Similar results for Sudoku, Golomb rulers and random
3-SAT.

17

Despite its approximations and NB’s incorrect indepen-
dence assumption, BayesAcq gives accurate results on
common benchmarks, and inherits NB’s properties:

Speed On a Golomb ruler of length 12 it took 0.07
seconds, while other methods took minutes or hours.

Scalability Most problems in the literature have a bias
with tens of thousands of candidates. BayesAcq learned
the 50 clauses for a random 3-SAT problem with a bias
of 1.3B candidates, in 16,259 seconds.

Robustness In experiments BayesAcd gave correct re-
sults with up to 10% misclassified instances (though
this required some hyperparameter tuning).

18

A sequential approach

Still under the heading of supervised learning, another
CA method published here:

S. D. Prestwich.
Robust Constraint Acquisition by
Sequential Analysis, ECAI 2020.

BayesAcg does something like Bayesian hypothesis test-
ing, so why not use a faster method?

Sequential analysis is a form of hypothesis testing in
which a stopping rule is used to stop sampling as soon
as the accumulated evidence is sufficient to accept or
reject the hypothesis.

19

This has obvious benefits for patients in clinical trial,
which can be halted as soon as it becomes obvious
that an experimental treatment is harmful, or that one
treatment is much more successful than another.

Another application is in manufacturing, where product
lots are tested for defects: lots should be accepted or
rejected after as few tests as possible, to save time and
COsSts.

A similar approach called Banburismus was developed
independently by Turing to speed up decryption. There
are many more applications in the literature.

20

In CA the stopping rule might enable us to avoid testing
a candidate against every training instance.

We use Wald's Sequential Probability Ratio Test (SPRT).
Eg products are sampled and tested one by one (m =
1,2,...), counting the number d,, of defects found so
far. If at any point dn < A the lot is accepted and
the algorithm halts, where A,, iS an acceptance num-
ber. On the other hand, if at any point d,, > R,, the
lot is rejected and the algorithm halts, where R,, is a
rejection number. Otherwise the algorithm continues
indefinitely.

21

,,,,,,,,,,,,,,,,,,,,,,,

4 parameters specify the sampling plan: pg is the defect
probability below which we prefer acceptance, pq is the
defect probability above which we prefer rejection, «
controls the type I and B the type II error rate.

22

The SeqAcq method has only 2 parameters (A, R), one
of which (R) can be set to 1 if we expect no errors in
the data:

SeqAcd(R,A)
for each candidate c in the bias
r<0 a<+0
repeat
randomly choose an instance e without replacement
(if impossible then reject ¢ as inconclusive)
if ¢ is violated by e
if the instance is a solution
r<—r—+1
if r > R reject ¢ as a constraint
a<+—a-+1
if a > A accept ¢ as a constraint

23

Here's an example where a candidate is violated by 2
sampled solutions. These cause two vertical moves
(horizontal moves correspond to non-solution violations)
which lead to rejection because R = 2. But if A non-
solution violations were observed first then ¢ would be

accepted as a constraint:

r

reject

1
,,,,,,,,,,,,,,,,,,,

24

Truncated SPRT

If there aren’'t enough violations of a candidate in the
dataset (eg all-equal) then it will be rejected as in-
conclusive. To handle these cases we modify SeqAcq
slightly: accept inconclusive candidates for which »r = 0
and a > 0.

SPRT is often modified to handle inconclusive cases,
yielding a Truncated SPRT that accepts or rejects them
on the basis of a limited number of samples.

25

Results

SeqAcq is also robust and scalable.

It also gives correct results on Latin squares but 10x
faster than BayesAcdq. Similarly for Sudoku.

On the large 3-SAT example it's about 200 times faster,
processing the bias of 1.3B candidates in 78 seconds.

26

Semi-supervised learning

Continuing the tour of ML areas, semi-supervised learn-
ing might be useful for CA. Suppose we have a lot of
training instances but only a few are labelled as pos-
itive or negative. This might be the case in datasets
that were scraped from the Web. Can we use the la-
belled instances and also benefit from the unlabelled
instances?

A possibility is to improve CA by using transduction to
label the unlabelled instances, giving a large labelled
dataset almost for free. (Presented at PTHG'20.)

I experimented with this idea using a semi-supervised
naive Bayes classifier based on the Expectation Max-
imisation (EM) algorithm.

27

Unfortunately the results were poor: each EM iteration
increased the classification error.

I also tried using NB to generate binary labels where
this could be done with high confidence, leaving other
instances unlabeled; but even when transduction was
quite accurate, CA on the large relabelled data was
usually less accurate than on the small labelled data.

Other researchers have also found EM to make learning
less accurate, so the result is perhaps unsurprising. A
possible explanation is that our CA data violated the
assumptions on which transduction relies.

28

In fact it is impossible to guarantee that the introduc-
tion of unlabelled data will not degrade performance:

J. E. van Engelen, H. H. Hoos.
A Survey on Semi-Supervised Learning.
Machine Learning 109:373—440, 2020.

Perhaps someone else can get this idea to work?

But semi-supervised learning might be unnecessary...

29

Unsupervised learning

What if we have no labelled instances? Can we learn a
constraint model from a dataset of unlabelled instances

(a set of total variable assignments that may or may
not be solutions)?

Perhaps surprisingly: yes!

S. D. Prestwich.

Unsupervised Constraint Acquisition.
ICTAI 2021.

30

Motivation

In many ML applications, unsupervised learning is the
key to scalability. Some experts believe that it's the
future of AI:

K. Hao.

The AI Technique That Could Imbue
Machines With the Ability to Reason.
MIT Technology Review, 20109.

31

Finding unsupervised CA methods was proposed as a
research challenge by Barry O’Sullivan over 10 years
ago.

All current CA methods use supervised learning and
need data prepared by humans. Meeting this challenge
could lead to automated data collection and hence au-
tomated CA.

So unsupervised CA could be very useful.

32

Though CA can remove the modelling bottleneck, it
introduces what is sometimes called a data collection
bottleneck.

This is a serious drawback. Eg to learn a standard
Sudoku puzzle, most methods require labelled datasets
of about 10,000 instances. Providing these requires
significant human effort.

For some applications there might be no known solu-
tions, or they might be difficult or expensive to obtain,
or we might not know what a non-solution looks like.

33

Intuition

Suppose we have training data for 10x10 Latin squares,
containing some solutions and some non-solutions —
but we don’'t know which are which, nor how many
there are.

Any random variable assignment is unlikely to be a solu-
tion, because a Latin square is quite a tightly-constrained
CSP. So any solutions must have been artificially added,
with all Latin square constraints satisfied.

Intuitively, shouldn’t target constraints be more often
satisfied than non-targets in such a dataset?

34

Also consider 9 x 9 Sudoku. There are ~ 6.7 x 1021
solutions and 98! possible matrices, giving the vanish-
ingly small probability 3 x 1026 of finding a solution in
a purely random dataset.

So any dataset for Sudoku that contains solutions sat-
isfies the constraints more often than a random set of
instances.

35

Target constraints should be satisfied more often than
would be expected, given the distribution of values.
This might be used to distinguish them from other can-
didates that should not be learned.

But are real-world datasets like this? How often should
we expect constraints to be satisfied? For inspiration
we turn to Data Mining...

36

Association rule mining

I proposed a method called MineAcq based on ARM,
a form of unsupervised learning and one of the main
areas of data mining.

ARM extracts interesting correlations, patterns and as-
sociations among items in databases.

Eg for a set of items I = {milk, bread, butter, beer, diapers}
a rule is

{butter, bread} = {milk}

ARM has many application areas: marketing, customer
relationship management, medical diagnosis, census data,
protein sequences.

37

To learn rules we can test every possible rule (but there
are shortcuts) and learn those that are interesting under
some measure, eg support of X =Y

p(XY)
interest (or lift)
p(XY')
p(X) p(Y)
conviction
p(X) p(Y)

p(XY)

38

MineAcqg tests each candidate using a measure of in-
terestingness, and learn those that pass the test.

But constraints are not association rules: they (usually)
have no antecedent or consequent. So how to do this?

A measure that doesn’t rely on these is

1 — E[p(c(2))]
1 — p(c(T))
ie the ratio of the expected and observed violation prob-
abilities. This should be larger than expected for target
constraints.

39

Applied to a rule X = Y it is equivalent to
p(X) p(Y)
p(XY)

which is the conviction V. We learn candidate c if
V(c) > T.

But conviction has a drawback: a candidate that's al-
most never violated has low V.

40

So we also learn any candidates that are almost never
violated, using the measure:

1 —p(ce(T))
ie violation probability. In ARM this is:
p(XY)

ie the Ralambondrainy measure R. We learn ¢ if R(c) <
p where p is another user-defined threshold close to O
(I use p =0.01).

41

Results

On standard benchmarks (Sudoku, Latin square, Golomb
rulers) and a new one (learning partial orders) MineAcq
learned correct models more quickly than most meth-
ods, beaten only by SegAcg and BayesAcq.

It often needs more instances than supervised methods.
But this is quite common for unsupervised learning, and
it’'s more than compensated for by the lack of reliance
on labels.

42

Related approaches

Similar approaches to MineAcq have been applied to
generating constraints for specific applications: con-
straint mining.

In process mining event logs are mined for useful infor-
mation, and this has been used to learn constraints for
scheduling problems.

A version of the Apriori algorithm has been designed
to learn certain constraints for enterprise security man-
agement.

But these are not general approaches to unsupervised
CA.

43

Some CA methods use positive-only data (Model Seeker,
Tacle, Valiant’'s method), some can also use negative-
only (QuAcqg), most use mixed (Conacq, Matchmaker,
SegAcq), a few can use noisy data (SeqAcq, BayesAcq).
MineAcq can use all these, and without labels.

Integrating CP and Data Mining has been an active
area of research for several years, but most work has
concentrated on the use of constraints in mining —
MineAcq applies mining to CP.

44

Symbolic ML

Inductive logic programming & version space learning
can be seen as a symbolic form of ML. Are there other
forms that can be used for CA?

I found an application of symbolic classifiers. This work
was presented at the IJCAI-DSO’'22 workshop (“Ex-
trapolating Constraint Networks by Symbolic Classifi-
cation”).

45

Most CA methods learn CSPs of a certain size from
instances of that size.

A few can learn a CSP from solutions of other sizes, or
learn a generalised CSP for all sizes: harder but more
useful.

Model Seeker can extrapolate from input solutions of
more than one size and learn a CSP of a different size.
ILP can learn a generalised constraint model. (Prob-
lem size is not the only kind of parameter that can be
generalised.)

46

A new approach to learning a CSP: “extrapolation”
from learned (or hand-coded) CSPs of other sizes.

The training CSPs can be learned by any convenient
CA method, so we can potentially handle positive-only,
negative-only, positive-negative, noisy or unlabelled data.

a7

Extrapolation by classification

Recall the N x N Latin square, a CSP with variables
v;i; € {1,...,N} (4,7 = 1,...,N) and disequality con-
straints v; j 7 vy i where i =4 or j = j'.

Suppose we already have CSPs for N = 2,3,5. Can we

learn a generator that, given a new value of N, outputs
the correct constraints?

48

Bias for a fixed value of N: all disequalities v; ; 7= vy
whose variable indices satisfy (i,5) < (¢, 7).

The subset with either ¢ = ¢’ or j = 5’ are to be learned:
call these class 1 and the rest class O.

Why not train a classifier to learn how to distinguish

between the two classes, using the classified bias as a
training dataset?

49

We expect to be given similar information for several
different problem sizes. So we include problem size,
and any other relevant parameters that we know of, in
the training instances.

Eg for Latin squares the training data are vectors of
values (N, i, 4,4, j') where N is size and v; ; # vy i is the
candidate.

It will contain some class 1 examples such as (3,0,0, 1, 2)
(because i = 4') and (3,0,2,1,1) (because j = j'), and
class O examples such as (3,0,1,1,2) (which satisfy nei-
ther) — see paper for classified bias example.

50

We have 342 labelled instances for N = 2,3,5. Train a
binary classifier to discriminate between classes 0 and
1. If no overfitting occurs then the trained classifier
can be used to select the correct constraints from the
bias of any Latin square size.

(For a constraint problem with more than one family
of constraints — eg disequalities and inequalities — we
treat the families separately, each with its own classified
bias.)

51

This “bias classification” approach has the advantage
that it transforms a problem with several different-sized
constraint models into fixed-size classification problems,
one per constraint type.

It works purely on constants and variable indices and
performs no reasoning on constraint properties, so it
can also be applied to SAT & ILP...

52

Degenerate cases

There are two special cases:

e class 1 empty, eg if we have a CA system containing
a library of constraints (most will be irrelevant)

e Class O empty, eg N-queens contains all possible dis-
equalities

Both cases cause some classifiers to return an error
message.

53

We test for these cases before applying a classifier: if all
training instances are in class 1, or all in class 0O, then
we assume that the same will be true for all unseen
instances.

So for any family of candidates, the result of training
IS either a memo that class 1 is empty, or a memo that
class O is empty, or a trained classifier.

54

Which classifier?

Classification is a fundamental ML task that has re-
cieved a great deal of attention, and a variety of meth-
ods is available. We trained several on Latin square
data with sizes N = 2,3,5, then tested it on size 4
(interpolation) and all prime sizes up to 47 (extrapola-
tion).

Results: surprisingly poor! As N increases, KNN and
RF start to misclassify most candidates: by N = 47
they respectively misclassify 81% and 93% of all can-
didates. LIN, LR, SVM and MLP misclassify 4% —12%.
No classifier even managed to interpolate to N = 4.

55

Only RF managed to fit the training data correctly —
but it was the worst extrapolator so it overfitted.

Attempts at tuning numerical classifier hyperparame-
ters, the SVM kernel (polynomial, sigmoid, radial basis
function), the MLP architecture (number and size of
hidden layers) and activation functions (sigmoid and
RelU) yielded no significant improvement.

LIN and LR were the best extrapolators, perhaps be-
cause their simplicity caused less overfitting.

56

Why do such diverse and successful classifiers all fail
hopelessly at this small binary classification task?

Conjecture: because the class 1 instances do not oc-
cupy a connected region of the feature space, or even
one with a few clusters.

This looks bad for the bias classification approach. For-
tunately, there is a solution...

57

Symbolic classification

We seem to need a classifier that can learn to separate
classes O and 1 via simple mathematical relationships on
variable indices etc. An interesting possibility is a sym-
bolic classifier which learns a mathematical function to
separate classes.

Symbolic regression is a well-known offshoot of GP and
can be used to explain datasets, but symbolic classi-
fication has been relatively neglected. 1 use gplearn
(Scikit-Learn, Google Colaboratory).

gplearn uses GP to evolve a function that fits the train-
ing data: class 1 is indicated by a positive output and
class O by a negative.

58

gplearn worked perfectly on Latin squares! It even
worked given only 1 training example (N = 5).

I call this method for CA by eXtrapolation XAcq (only
a research prototype at present).

Testing on other examples...

59

Latin squares with global constraints

To be useful, XAcq should be able to handle global
constraints such as alldifferent: eg for Latin squares,
an alldifferent constraint on each row and column.

Handling high-arity global constraints is difficult for most
CA methods because there are too many possibilities,
and the bias becomes exponentially large. Model Seeker
solves this by assuming that there is a lot of regular-
ity. We similarly assume that alldifferent constraints
will only be applied to rows and columns.

Latin square extrapolation then becomes degenerate
because all row and columns are constrained.
60

N-queens

We use a CSP with variablesv; € {1,..., N} (1 =1,...,N).
Row constraints are implicit in the model, and the col-
umn constraints (disequalities between variables) are a
degenerate case with empty class 0. So we need only
use the symbolic classifier to extrapolate the diagonal

constraints |v; — vj| # |i — j].

XAcq successfully learns (N = 2,3,5 again) and extrap-
olates to bigger N (up to 47).

61

Golomb rulers

Suppose that specific CSPs have been learned for sev-
eral sizes, containing disequalities and quaternary con-
straints of the form |z; — x| # |zy — x| (@ < j, i' <3,
i <id, 7 £k kE£E).

All disequalities and all quaternary constraints are learned
in each example. So both are degenerate cases with
empty class O.

Learning fixed-size Golomb ruler CSPs has been found
quite challenging, but their extrapolation is easy.

62

Magic squares

A magic square is a square of integers in the range
1,..., N with no two integers the same, and with each
row, column and main diagonal summing to the same

number M = N(N?+1)/2.

CSP for order N has variables v;; € {1,...,N?} (1 <
i,7 < N). They all take different values, and each row,
column and diagonal sums to the magic constant M
which is a function of the square size.

63

Suppose we have magic squares for N = 3,4,5 each
with a learned CSP. Regqgularity assumption: only sums
on rows, columns and diagonals are constrained.

I applied XAcg to rowsum constraints: colsum extrap-
olation problem is identical, and diagsum extrapolation
IS degenerate. It extrapolated correctly.

64

BIBDs

5 values V, B, R, K, A\ define the problem, but they are
not independent and it is common to specify only V, K, \.
We can then calculate R=X(V —-1)/(K —-1) and B =
VR/K.

Suppose we have learned CSPs for several instances,
but that we know nothing about BIBDs: we know V, B
because they are observable, but have not considered
R, K, X and do not know their importance.

Then extrapolation will fail because the problem is un-
derspecified: no function exists that can predict R, K, A
from V, B alone.

65

But if the ZAcqg user notices that all row sum con-
straints use the same value R, that the column con-
straints all use the same value K, and that all dot
product constraints use the same value X\, s/he can
add these parameters as training data columns. If they
are not useful, we hope that gplearn will ignore them.

After training on parameters (6,10,5,3,2), (7,7,3,3,1),
(8,14,7,4,3), (9,12,4,3,1) and (10,15,6,4,2), XAcq ex-
trapolates correctly to (7,14,6,3,2), (9,24,8,3,2),
(10,15,6,4,2), (13,26,6,3,1) and (15,35,77,3).

66

Note

The extrapolated BIBD models tell us nothing about
the relationships between the 5 parameters: they allow
us to generate a CSP for any combination of values,
even (1,1,1,10,10) representing a nonsensical case with
more 1s per row than there are numbers per row.

But XAcq is not a theorem prover so this seems rea-
sonable.

67

An advantage: combining MineAcqg with XAcq yields
the first known approach to learning CSPs of an unseen
size from unlabelled data.

A disadvantage: each specific CSP requires sufficient
instances for CA, whereas Model Seeker can learn from
a very small number of instances.

(Model Seeker aims to generate efficient and non-redundant
CSPs while XAcq and most other methods do not.)

68

Conclusion & future work

ML is a rich research area with many ideas that can be
applied to CA.

Can reinforcement learning be used for CA? Gene sug-
gested this but I can’'t see a way.

Transfer learning? Model Seeker already does some-
thing like this, but using human expertise instead of

ML.

I'm working with Gregory Provan & Samaksh Chandra
on CA as seqg2seq learning via transformers.
69

Notes on Model Seeker

In some ways it's still the SOTA!

e Often requires only a few solutions (or just 1).

e It's been tested on hundreds of problems.

e It can handle problems that are larger than usual in
the literature, some with thousands of variables.

70

e It can learn high-level models containing a wide
range of global constraints. These can not be han-
dled by most methods: exponentially large bias.

e It's fast, often taking only seconds and at most a
few minutes.

71

But it has limitations:

e It assumes that the desired constraint model has
a regular structure that can be represented as a
conjunctions of sets of identical constraints.

e It applies heuristics to exclude atypical usages of
global constraints, to use stronger and more pop-
ular constraints, to eliminate redundant and domi-
nated constraints, and to avoid trivial and uninter-
esting constraints. This might break down on less
structured or on atypical applications.

72

e It requires human expertise to provide necessary in-
formation, which might turn out to be difficult on
new applications.

It might be viewed as an expert system approach, with
similar brittleness.

If ML-based approaches can catch up with Model Seeker,
the results could be impressive!

73

