
Learning Preferences over Unsatisfiable Subsets
Emilio Gamba #

Vrije Universiteit Brussel, Belgium
KU Leuven, Department of Computer Science, Belgium

Marco Foschini #

KU Leuven, Department of Computer Science, Belgium

Jayanta Mandi #

KU Leuven, Department of Computer Science, Belgium

Bart Bogaerts #

Vrije Universiteit Brussel, Belgium

Tias Guns #

KU Leuven, Department of Computer Science, Belgium

Abstract
Explanation techniques for constraint satisfaction and optimisation problems often rely on the
computation of a minimal unsatisfiable subset (MUS). A MUS, an explanation of an unsatisfiable
problem, can also be used to explain why the problem entails a variable’s value assignment. Many
MUSs typically exist, hence identifying the preferred one for an user is of research interest. Although
techniques for computing cost-optimal weighted MUSs can be employed to find the most preferred
explanation, it falls upon the user to specify these weights. We investigate whether we can learn
preference scoring functions over MUSs from a dataset of pairwise comparison between MUSs using
learning-to-rank techniques. We showcase on sudoku that we can learn functions that score well
on choosing between two smallest MUSs. Moreover, by using an iterative learning setup, we can
directly learn a linear scoring function that can be integrated to generate preferred explanations
directly.

2012 ACM Subject Classification Computing methodologies → Discrete space search; Computing
methodologies → Supervised learning by classification; Theory of computation → Constraint and
logic programming

Keywords and phrases Explainable AI, CSP, MUS

Funding This research received funding by the Flemish Government (AI Research Program), the
Research Foundation - Flanders (FWO) project G070521N; the European Research Council (ERC)
under the EU Horizon 2020 research and innovation programme (Grant No 101002802, CHAT-Opt).

1 Introduction

The field of Explainable Artificial Intelligence (XAI) aims to build trust by providing
intelligent systems with explainable agency. In this paper, we are particularly interested in
explainable AI in the context of Constraint Programming (CP) [8]. A prominent problem in
explainable constraint solving is explaining why a model is unsatisfiable [15, 2, 12, 13, 6]. For
instance, consider a nurse rostering problem, which involves creating duty rosters for nursing
staff over a specified planning period while adhering to multiple soft and hard constraints,
such as the maximum number of working hours. If certain hard constraints cannot be met,
it is crucial to provide a clear explanation.

Many methods tackle this problem by providing a deductive explanation in the form
of a minimal unsatisfiable subset (MUS), which is a subset of the model’s constraints that
renders the problem unsatisfiable, and thus yielding an inconsistency. Such subsets can also
be used to explain why a value is assigned to a specific variable by demonstrating a minimal

mailto:emilio.gamba@vub.be
https://orcid.org/0000-0003-1720-9428
mailto:marco.foschini@kuleuven.be
https://orcid.org/0000-0001-6548-6417
mailto:jayanta.mandi@kuleuven.be
https://orcid.org/0000-0001-8675-8178
mailto:bart.bogaerts@vub.be
https://orcid.org/0000-0003-3460-4251
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155

2 Learning Preferences over Unsatisfiable Subsets

subset of constraints that entail that value assignment [3]. For example, in the context of
the nurse rostering problem, if a nurse is assigned late working hours, the MUS can justify
this assignment by identifying the constraints that led to this decision.

Typically, multiple MUSs exist because an unsatisfiable problem can have more than one
inconsistency. That is why the identification of the MUS that is most comprehensible to a
user has received attention from researchers. [10] proposes the cardinality of the MUS as a
potential measure of explanation quality and, as such, compute the cardinality-smallest MUS
(SMUS). This concept was later expanded in [3], where a hand-crafted linear objective function
is introduced to quantify human understandability. Such a function requires identifying
features like the number of considered constraints and the number of pre-assigned values.
Given this function, they heuristically optimize it, aiming to find a MUS that could potentially
be more understandable compared to an SMUS. This approach is further extended in [6],
by proposing cost-optimal weighted MUS algorithms that find an optimal MUS for such
weighted linear objective function, for a hand-crafted set of weights.

It can be challenging for human users to explicitly specify weights that consistently lead
to good solutions in a specific problem domain [18]. We aim to infer such weights indirectly
from user feedback. Specifically, we will use machine learning (ML) techniques for learning
such a function. We hence investigate whether we can learn a preference scoring function over
MUSs from labelled data, more specifically on a dataset of pairwise comparisons between
MUSs in a specific problem domain, where a user chose one of the explanations over the other.
The final goal is to embed the scoring function in cost-optimal weighted MUS algorithms,
allowing to return explanations in line with the preferred explanations in the dataset, and
more generally in line with the implicit preferences of the user.

We will evaluate the learning approach on the pedagogical domain of sudoku puzzles, as
the constraint sets of the MUSs are intuitive to visualize over the sudoku grid. This makes it
a problem domain in which many users have the required domain knowledge to interpret the
explanations, and for which labelling pairs of explanations can be done quickly.

Our contributions are as follows:

1. We identify domain-agnostic as well as domain-specific features for MUSs by counting
over different subsets of constraints how many are present in the MUS.

2. We compare feature choices and use different point-wise and pair-wise learning-to-rank
methods, showing that in the sudoku domain, domain-specific features are essential to
accurately discriminate between MUSs, and multiple learning techniques can do this well.

3. We demonstrate that we can not only learn how to discriminate between two smallest
MUSs, but that a few iterations of iterative learning with linear predictors allows learning
a scoring function that can be directly used to generate good MUSs.

2 Preliminaries

We now define the mathematical concepts needed for understanding the addressed problem.

2.1 Constraint Satisfaction Problem
▶ Definition 1. A constraint satisfaction problem (CSP) [21] is a triple ⟨X , D, C⟩ where: X
is a set of variables, D is a set of domains Dx of allowed values for each variable x ∈ X , C
is a set of constraints over a subset of the variables.

A constraint is typically described by a formula (e.g., x + y ̸= 1), and restricts the values
that can be assigned to the variables. A (partial) assignment I is a (partial) mapping of

E. Gamba, M. Foschini, J. Mandi, B. Bogaerts and T.Guns 3

variables to values from their domain (also called facts). An assignment satisfies (or falsifies)
a constraint if the constraint evaluates to true (or false). A solution is an assignment that
satisfies all constraints. A set M ⊆ C is called satisfiable if there exists an assignment that
satisfies all constraints in M ; otherwise it is unsatisfiable.

▶ Example 2 (Sudoku). The 9 × 9 Sudoku problem is a logic puzzle that requires filling in a
set of digits 1 to 9 in a rectangular grid, such that each column, each row and each 3 × 3
block contains exactly one occurrence of each digit.

The 9 × 9 Sudoku problem can be modelled as a CSP with a 9 × 9 array of variables
cells, each over domain {1..9} subject to an alldifferent constraint for each row, each
column and each 3 × 3 block in the puzzle.

2.2 Minimal Unsatsfiable Subsets as explanations of unsatisfiability
The most well-known type of explanations in CSPs are Minimal Unsatisfiable Subsets (MUS).
They explain why a CSP is unsatisfiable by identifying a set of conflicting constraints.

▶ Definition 3. A subset M ⊆ C is a Minimal Unsatisfiable Subset if M is unsatisfiable and
all strict subsets of M are satisfiable.

Many algorithms exist for finding or enumerating MUSs [15, 17, 13, 14]. We will use [6]
which allows computing an Optimal Unsatisfiable Subset (OUS) given a linear objective
function over the constraints that will be minimized.

▶ Definition 4. Let f be a function assigning a score to every set of constraints M ⊆ C.
An Optimal Unsatisfiable Subset (OUS) is an unsatisfiable set M ⊆ C such that all subsets
M ′ ⊆ C with f(M ′) < f(M) are satisfiable. The function f is linear if it maps M to∑

c∈M wc for fixed weights wc ∈ R.

For a linear objective function in which all weights are equal the OUS corresponds to the
smallest MUS.

2.2.1 Step-wise explanations using minimal unsatisfiable subsets
While MUSs are used to explain when a problem is unsatisfiable, they can also be used to
find a minimal subset of constraints that entails a value assignment, a fact [2]. Two examples
of such an explanation step are shown in Fig. 1; they explain the green cell, with used facts
highlighted in yellow and used constrains blue boxes.

▶ Definition 5. Let I be a partial assignment of a CSP ⟨X , D, C⟩, an explanation step is a
triple (E , S, N), also denoted E ∧ S ⇒ N , such that:

E ⊆ I is a set of facts x = v where x ∈ X and v ∈ Dx ;
S ⊆ C is a set of constraints;
N is a set of facts x = v, such that x is assigned the value v in all solutions of S that
agree with E.

Explanation steps are closely related to MUSs: an explanation of N = {x = v} corresponds
to the MUS of E ∧ S ∧ {x ̸= v}. Hence, MUS-finding algorithms can be used to compute
explanation steps [3, 6]. We will use an OUS algorithm, where we denote an explanation
step (E , S, N) as e and will define a linear scoring function f(e) for use with OUS.

4 Learning Preferences over Unsatisfiable Subsets

Figure 1 Two possible explanation steps from the Sudoku app for {cells[7, 7] = 6} (in green).
Used facts are highlighted in yellow, while used constraints are the blue rectangles. Both are MUSs;
the one on the left has size 9 (8 facts and 1 constraint to explain the green 6), the one on the right
has size 7 (4 facts and 3 constraints).

3 Data-driven Methodology

Our goal is to learn a scoring function for predicting a score for every possible explanation in
a certain problem domain. We will use ML methods on user-labelled data, which requires
defining a feature ϕ(e), that maps the explanation e to fixed-size vector of numbers (features).
This allows one to learn a function fθ(ϕ(e)) with θ being the parameters of the learning
model. A linear function corresponds to θ⊤ϕ(e), which is linear in e if ϕ(e) is.

3.1 Feature Encoding

Technically, the OCUS method [6] allows searching for a OUS given a weight for every
constraint. However, since the relevant constraints can differ between problem instances in
the same domain, we can not learn a weight for each individual constraint directly.

The feature mapping ϕ(e) allows us to abstract from that. Each feature should represent
a meaningful property of a MUS. A straightforward property is the number of constraints in
a MUS, minimizing this leads to SMUS. However, there may be many SMUSs, so additional
properties are required to discriminate between them. Additionally, to apply the OCUS
algorithm, we have to ensure that the objective is a linear function of the constraints. To
do so, we define each feature to be a linear sum over a meaningful subset of the constraints.
In other words, if we can group the constraints into different groups, the count of elements
within each group serves as the feature value. We can then use machine learning to learn a
weighted combination over these counts.

▶ Example 6. Take a simple Boolean satisfiability problem: a, b, ¬a ∨ b, ¬a ∨ ¬b. One SMUS
is a, ¬a∨b, ¬a∨¬b and another is a, b, ¬a∨¬b. Both have size 3 and can not be discriminated
based on size, though one can imagine most people finding the second one easier to interpret.
If we group constraints into ‘unit clauses’ and ‘other clauses’, then the first would have
counters (1,2) and the second (2,1) and any function assigning larger weight to the ‘other
clauses‘ feature would always generate MUSs of the second kind.

Features for explaining unsatisfiability

We consider the case where a constraint is not restricted to a clause (as in SAT solving), but
rather can be any expression over finite-domain variables (as is typical in CP). This means
that we can group the constraints based on the syntactic form of expression used. For
instance, we can group constraints into facts (x = v), pairwise inequalities (x1 ≠ x2)), linear

E. Gamba, M. Foschini, J. Mandi, B. Bogaerts and T.Guns 5

constraints ((
∑

i(wi · xi) ≥ t), particular types of global constraints (e.g., alldifferent(S)),
etc. These features are independent of the problem domain and therefore domain-agnostic.

We can also identify additional domain-specific groupings. For example in the sudoku
use case explained below, we will differentiate between alldifferent constraints over rows, over
columns and over blocks. Syntactically they are all the same, but visually, users might have
preferences of one over the other.

Features for explaining a fact x = v

When we wish to explain that E ∧ S ⇒ (x = v) we compute a MUS of the unsatisfiable
E ∧ S ∧ (x ̸= v). In this case, we can exploit the knowledge that we want to explain x = v.

We propose to measure the distance from any constraint to the fact x = v. More
specifically, consider the (bipartite) variable-constraint graph in which variables are connected
to the constraints they are involved in. We can group constraints by the distance (in this
graph) to the variable x. For instance, the constraints at distance one are precisely those
that mention x. For the special case of constraints that themselves are simple facts, i.e.,
y = z, we can use knowledge of the target fact x = v in two ways: we can group the facts
based on the distance of x to y or we can group them based on whether they assign the
same value (v = z) or a different value (v ̸= z). As these features are only dependent on the
variable-constraint graph, they are domain-agnostic. Also here we can identify additional
domain-specific groupings; we will clarify this with sudoku examples in Section 4 below.

3.2 ML Model Training

Our training data consists of a set of triples in the form of (e1, e2, l), where e1 and e2 are two
alternative explanations for the same unsatisfiable problem, and l indicates which one the
user preferred. Given that users are expected to rank one explanation higher than another,
the learning task can be framed as a Learning-to-Rank (LtR) problem [16]. LtR aims to
learn a ranking function that explicitly orders any new set of items. We particularly focus
on pointwise classification and pairwise classification, which learn a scoring function. As is
common in LtR, we will disregard the triples for which the user has no preference.

Pointwise classification. The LtR problem can be framed as a standard classification
task. This is a pointwise LtR approach because this approach treats each explanation
independently. Given a tuple (e1, e2, l) we generate two data points: (ϕ(el), +1) for the
explanation that was chosen by the user, and (ϕ(eo), −1) for the other one. We can then use
any off-the-shelf classifier for training, including linear logistic regression [9], decision trees [4],
random forests [1], SVM classifiers [22] and more. Out of these, the logistic regression (when
dropping the logistic function computation at inference time) and SVM classifier (when used
with a linear kernel) produce linear scoring functions.

Pairwise learning-to-rank. In the pairwise LtR formulation, each (e1, e2, l) can be used
directly as training data. Let el be the explanation chosen by the user, and eo be the other.
Then we know that the former is preferred over the latter: el ≻ eo. In pairwise learning-to-
rank, the methods learn a function fθ(ϕ(e)) such that fθ(ϕ(el)) > fθ(ϕ(eo)) for every labeled
query. Examples of pairwise LtR methods are SVMRank [11] and XGBoostRanker [5]. Only
SVMRank with a linear kernel will produce a linear scoring function.

6 Learning Preferences over Unsatisfiable Subsets

4 Use-case: Step-wise Explanations for Sudoku

To evaluate the feasibility of using ML to learn a preference scoring function over unsatisfiable
subsets, we will use the concept of explanation steps over sudoku puzzles [6].

An explanation step in sudoku explains why an empty cell needs to take a particular
value. This is then repeated for the remaining empty cells, until all cells in the sudoku are
explained. All cell values must be explainable by the constraints and the initial assignment,
because a sudoku has a unique solution.

For the labelling, we developed a mobile-friendly web app that highlights the facts, rows,
columns and squares that are used in an explanation, as shown in Fig. 1. Once familiar with
the concept of explanation steps, we observed that users tend to have explicit preferences
between them, and that they can label pairs relatively quickly. We store the response as a
triple (e1, e2, l) where l = 0 if no preference is given, l = 1 if the first is chosen and l = 2 if
the second was chosen.

Our generation of explanation steps is as follows: 1) we use QQWing [19] to generate
intermediate Sudoku puzzles. We opt for this level to avoid limiting participation to only users
with expert skills. 2) we use the OCUS tool [6] to enumerate a sequence of explanation steps
by computing the smallest MUS. For every step, we then either generate the second-smallest
MUS, or use a learned cost-function to generate an OUS depending on the experiment.

Feature encoding

All constraints for sudoku are either facts (x = v) or alldifferent constraints. So the two
most basic syntactic features are: number of facts and number of constraints. Using the
concept of distance to the fact explained above, we can further group the constraints into
adjacent constraints (constraints at distance 1 from the fact to explain x = v) and other
constraints (distance > 1). The facts can also be split into adjacent facts (the variables of
the adjacent constraints) and other facts, as well as whether the fact assigns the same value
as x = v or a different one. These features are domain-agnostic, in our case we selected a
subset of 5 linearly independent features (see Appendix for the detailed list).

For the domain-specific features, we can further split the above constraint groups
into separate subgroups for row, column and block constraints. We also introduce separate
counters for adjacent row/column or block facts; it is not an issue that adjacent block facts
overlap with row/column facts. The domain-specific features are considered together with
the domain-agnostic ones, resulting in 12 linearly independent features (see Appendix for
the full list).

5 Experiments and Results

We will evaluate how well machine learning methods are able to capture user preferences
over sudoku explanation steps. The research questions are:

RQ1. How important is the feature representation to learn good scoring functions?
RQ2. What learning techniques (pointwise and pairwise) perform best?
RQ3. How well can the method be used for generating new explanations, and does this

improve over multiple feedback iterations?

Setup. We use a single core of a 6-core INTEL(R) 2.6 Ghz processor with 16GB of RAM
for all experiments. We implement CSP modeling and OUS-based explanation generation

E. Gamba, M. Foschini, J. Mandi, B. Bogaerts and T.Guns 7

using CPMpy 0.9.16 [7], and ML classifiers from Sci-Kit Learn 1.3.0 [20], XGBoost
1.7.6 [5] and PySVMRank using 5-fold cross-validation.

5.1 Learning a discriminator function
We evaluate which type of features and learning methods are suitable to learn to discriminate
between two explanations. For around 250 explanation steps, we generate the top-2 SMUSs
and let users label these pairs. Table 1 presents the performances of the models, using 5-fold
crossvalidation independently for data of 6 different users. We evaluate it according to:

Correct When the scoring function scored the user-chosen explanation highest.
Equal When the scoring function gave the two explanations an equal score.
Wrong When the scoring function scored the user-chosen explanation lowest.

In Table 1 we distinguish between only using the number of constraints and facts as
features, using only the domain-agnostic features, and using both domain-agnostic and
domain-specific features. As benchmarks, we consider two handcrafted linear functions: the
one that is used for computing the SMUS [10] and another from [3] making a distinction
between the number of used alldifferent constraints c and the number of used facts f . In
terms of ML techniques we considered linear pointwise classifiers (Logistic Regression, SVM
with linear kernel) and a non-linear classifier (Gradient Boosted Trees), as well as a linear
ranker (SVM rank with linear kernel) and a non-linear one (Gradient Boosted Tree ranker).

Table 1 (top row) shows that only using the size of the MUS leads to a large amount of
Equal results, which is to be expected since we generate the top-2 SMUSs to choose between.
Conversely the manual function from [3] can distinguish more explanations. Curiously, all
ML methods perform slightly worse than this function, perhaps due to the amount of data.

We also see that considering only domain-agnostic features still leads to many Equals,
meaning that such features are largely insufficient to differentiate between the two SMUSs.
At the same time all classifiers perform very similar.

Finally, when using all features we rarely have Equal cases. We can also see very strong
performance by all predictors, linear and non-linear, with an additional benefit for the
pairwise ranking methods. This shows that ML methods can learn to discriminate between
two SMUSs with very high accuracy given a labelled dataset. This is true across the users.

5.2 Iteratively learning a generator function
Given that SVM Ranker (with a linear kernel) returns a linear scoring function, we proceed
to examine whether this learned scoring function is suitable for generating the preferred
explanation directly. To test this, we generate around 50 new pairs of sudoku explanation
steps from a single puzzle. Each pair is an SMUS and one using the OCUS algorithm
optimizing the learned scoring function, and we ask the users which one they prefer.

The first row (Iteration 1) in Table 2 shows that this initially performs much worse than
generating an SMUS. This is because the predictors are only trained on SMUSs and are
hence biased to predict between MUSs that are already small and subset minimal. Since the
learned scoring function is not trained to rank all MUSs, this essentially tests its performance
on a large out-of-sample distribution and we can see that it is too specific to the training
data.

To address the shortcoming of the data, we conduct additional iterations as is common in
machine learning with concept drift. In the i + 1th iteration, the newly labeled explanation
pairs are added to the training data. For each iteration we evaluate the predictive accuracy

8 Learning Preferences over Unsatisfiable Subsets

Features Classifier Correct Equal Wrong

cons, # facts

Handcr. SMUS (c + f) [10] 7.1% 90.1% 2.8%
Handcr. OUS (20 × c + f) [3] 25.6% 70.6% 3.8%

Logistic Regression 25.3% 70.6% 4.1%
SVM Classifier 20.4% 73.0% 6.6%

SVM Ranker 24.4% 70.7% 4.8%

Domain-agnostic

Logistic Regression 28.8% 64.8% 6.4%
SVM Classifier 29.9% 64.8% 5.2%

XGBoost Classifier 28.4% 65.2% 6.4%
SVM Ranker 29.2% 64.8% 6.0%

XGBoost Ranker 28.8% 65.7% 5.5%

Domain-specific

Logistic Regression 90.7% 1.2% 8.1%
SVM Classifier 85.7% 1.4% 12.9%

XGBoost Classifier 87.3% 1.2% 11.5%
SVM Ranker 90.8% 1.3% 7.9%

XGBoost Ranker 91.8% 1.5% 6.7%
Table 1 Correctness of Point wise Classifiers and Pairwise ranker methods. We train one classifier

per user and compute the average.

Test data New generate & label
Iteration Correct Equal Wrong ML wins No preference SMUS wins

1 94.0% 0.0% 6.0% 0.0% 0.0% 100.0%
2 75.1% 0.0% 24.9% 7.3% 7.3% 65.4%
3 72.2% 0.0% 27.8% 29.8% 8.8% 61.4%
4 70.5% 0.0% 29.5% 44.6% 39.3% 16.1%
5 66.8% 0.0% 33.2% 62.5% 19.6% 17.9%

Table 2 Iterative learning approach with SVM Rank (linear kernel) over domain-specific features.
In each iteration, new data is labelled by the user and added to the training data of the next iteration.

using crossfold validation (3 left columns) and on newly generated pairs that use the learned
scoring function (3 right columns).

As the number of iterations increases, the accuracy in predicting the preferred explanation
on the training data decreases. This shows that there are fewer ’shortcuts’ to take in the
data, and the classifier has a harder time balancing the multiple and possibly conflicting
preferences in the labelled data set.

At the same time, we can see that iteration after iteration, the scoring function becomes
better suited at directly generating explanations. Indeed, the percentage of times where
the ML generated explanation is preferred over an SMUS increases. It is hence learning a
preference scoring function that better aligns with the user preferences and can be used as
to generate explanations directly.

6 Conclusions

In this paper, we consider the task of learning a scoring function for MUSs to capture which
ones are more preferred by a user. To do so, we propose a principled feature encoding

E. Gamba, M. Foschini, J. Mandi, B. Bogaerts and T.Guns 9

technique for MUSs. This makes it possible to learn a scoring function from a dataset of
pairwise comparison, using learning-to-rank techniques. We demonstrate this approach on
the easy-to-interpret task of explaining sudoku cell assignment. In this domain, using domain-
specific features was essential to discriminate between preferred smallest MUSs. Using linear
features and linear SVMrank, we further showed that an iterative training approach can
learn a scoring function that can be used to generate good explanations directly.

Many avenues for future work exist. First, we only applied this on the pedagogical sudoku
domain where it was easy and quick to experiment. This approach can now be validated in
more realistic problem domains, such as explanations in staff rostering or crew scheduling,
where domain experts are harder to find. Our pairwise labeling approach also requires
good domain-specific visualisations, for users to quickly see the differences and express a
preference. This potential interaction between visualisation quality and perceived preferences
invites a Human-Computer Interaction approach to designing and evaluating explanations in
domain-specific settings. Our learning techniques can then be used in a subsequent step.

On the technical side, the sufficiency of a linear scoring function and the efficacy of the
iterative method invite to investigate online, real-time learning approaches. Online methods
could require less data, where data labelling is an important bottleneck to the use as well as
the evaluation of the techniques in this work. Online learning would also require sufficiently
fast OUS algorithms for interactive use, another key bottleneck.

References
1 Jehad Ali, Rehanullah Khan, Nasir Ahmad, and Imran Maqsood. Random forests and decision

trees. International Journal of Computer Science Issues (IJCSI), 9(5):272, 2012.
2 Ignace Bleukx, Jo Devriendt, Emilio Gamba, Bart Bogaerts, and Tias Guns. Simplifying

step-wise explanation sequences. In Roland H. C. Yap, editor, 29th International Conference
on Principles and Practice of Constraint Programming, CP 2023, August 27-31, 2023, Toronto,
Canada, volume 280 of LIPIcs, pages 11:1–11:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023.

3 Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining how to
solve constraint satisfaction problems. Artif. Intell., 300:103550, 2021.

4 Leonard A Breslow, David W Aha, et al. Simplifying decision trees: A survey. Knowledge
engineering review, 12(1):1–40, 1997.

5 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, 2016.

6 Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining csps with unsatisfiable
subset optimization. J. Artif. Intell. Res., 78:709–746, 2023.

7 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

8 Sharmi Dev Gupta, Begum Genc, and Barry O’Sullivan. Explanation in constraint satisfaction:
A survey. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021,
pages 4400–4407. ijcai.org, 2021.

9 David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic regression.
John Wiley & Sons, 2013.

10 Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and João Marques-Silva. Smallest
MUS extraction with minimal hitting set dualization. In Gilles Pesant, editor, Principles and
Practice of Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science,
pages 173–182. Springer, 2015.

10 Learning Preferences over Unsatisfiable Subsets

11 Thorsten Joachims. Training linear svms in linear time. In Tina Eliassi-Rad, Lyle H. Ungar,
Mark Craven, and Dimitrios Gunopulos, editors, Proceedings of the Twelfth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA,
August 20-23, 2006, pages 217–226. ACM, 2006.

12 Ulrich Junker. Quickxplain: Conflict detection for arbitrary constraint propagation algorithms.
In IJCAI’01 Workshop on Modelling and Solving problems with constraints, volume 4. Citeseer,
2001.

13 Niklas Lauffer and Ufuk Topcu. Human-understandable explanations of infeasibility for
resource-constrained scheduling problems. In ICAPS 2019 Workshop XAIP, 2019.

14 Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Domenico Sal-
vagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Constraint
Programming - 14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017,
Proceedings, volume 10335 of Lecture Notes in Computer Science, pages 77–93. Springer, 2017.

15 Mark H. Liffiton, Alessandro Previti, Ammar Malik, and João Marques-Silva. Fast, flexible
MUS enumeration. Constraints An Int. J., 21(2):223–250, 2016.

16 Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011.
17 João Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications (invited

paper). In 40th IEEE International Symposium on Multiple-Valued Logic, ISMVL 2010,
Barcelona, Spain, 26-28 May 2010, pages 9–14. IEEE Computer Society, 2010.

18 George Mavrotas. Effective implementation of the epsilon-constraint method in multi-objective
mathematical programming problems. Appl. Math. Comput., 213(2):455–465, 2009.

19 Stephen Ostermiller. Qqwing–sudoku generator and solver, 2011.
20 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Edouard Duchesnay. Scikit-learn: Machine learning in python. CoRR, abs/1201.0490, 2012.

21 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

22 Bernhard Schölkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett. New support
vector algorithms. Neural computation, 12(5):1207–1245, 2000.

E. Gamba, M. Foschini, J. Mandi, B. Bogaerts and T.Guns 11

A Appendix

Features for Syntactic-only training Description
number_adjacent_constraints No. of used adjacent constraints
number_other_constraints No. of non-adjacent used constraints
number_adjacent_facts_other_value No. of used and adjacent facts that have a different

value from the explained fact
number_other_facts_same_value No. of used and non-adjacent facts that have the same

value of the explained fact
number_other_facts_other_value No. of used and non-adjacent facts that have a

different value from the explained fact

Features for Domain-specific training Description
number_adjacent_facts_other_value No. of used and adjacent facts that have a different

value from the explained fact
number_other_facts_same_value No. of used and non-adjacent facts that have the same

value of the explained fact
number_other_facts_other_value No. of used and non-adjacent facts that have a

different value from the explained fact
number_adjacent_block_cons No. of of adjacent used block constraints
number_adjacent_row_cons No. of of adjacent used row constraints
number_adjacent_col_cons No. of of adjacent used column constraints
number_other_block_cons No. of non-adjacent used block constraints
number_other_row_cons No. of non-adjacent used row constraints
number_other_col_cons No. of non-adjacent used column constraints
number_adjacent_block_facts No. of used and adjacent facts from blocks
number_adjacent_row_facts No. of used and adjacent facts from rows
number_adjacent_col_facts No. of used and adjacent facts from columns

	1 Introduction
	2 Preliminaries
	2.1 Constraint Satisfaction Problem
	2.2 Minimal Unsatsfiable Subsets as explanations of unsatisfiability
	2.2.1 Step-wise explanations using minimal unsatisfiable subsets

	3 Data-driven Methodology
	3.1 Feature Encoding
	3.2 ML Model Training

	4 Use-case: Step-wise Explanations for Sudoku
	5 Experiments and Results
	5.1 Learning a discriminator function
	5.2 Iteratively learning a generator function

	6 Conclusions
	A Appendix

