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—— Abstract

Formulating an effective constraint model of a parameterised problem class is crucial to the
efficiency with which instances of the class can subsequently be solved. It is difficult to know
beforehand which of a set of candidate models will perform best in practice. This paper presents
a system that employs graph rewriting to reformulate an input model for improved performance
automatically. By situating our work in the ESSENCE abstract constraint specification language,
we can use the structure in its high level variable types to trigger rewrites directly. We implement
our system via rewrite rules expressed in the Graph Programs 2 language, applied to the abstract
syntax tree of an input specification. We show how to automatically translate the solution of the
reformulated problem into a solution of the original problem for verification and presentation. We
demonstrate the efficacy of our system with a detailed case study.
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1 Introduction

Formulating an effective constraint model of a problem of interest is crucial to the efficiency
with which the problem can subsequently be solved [6]. It is difficult to know beforehand
which of a set of candidate models will perform best in practice. In this paper we present
our work in progress on a system that reformulates an input model to improve performance
automatically. It differs from some earlier work on automated model reformulation, such as
CGRASS [8], Tailor [9], the work of Bessiere et al. [2] to learn implied global constraints, or
Savile Row [16], in that it reformulates a model of a parameterised problem class rather than
individual problem instances. This has the advantage that the effort made to reformulate
the model is amortised over all the instances of the class that are to be solved, rather
than having to be paid back during the solution of a single instance. Furthermore, by
implementing reformulation as forward-chaining sound rewrite rules, we avoid the need
for external verification in existing class-based reformulation [5, 4, 14]. Here we build on
our previous proposal for a system [15], demonstrating how to apply graph transformation
techniques [21] to achieve automated rewriting of ESSENCE specifications.

In contrast to recent work by Leo et al. [13], who reformulate a low level model of
a problem class, we situate our work in the ESSENCE abstract constraint specification
language [7]. The advantage of this approach is that the structure apparent in a concise
abstract specification can be used to trigger and guide reformulation. For example, Listing 1
presents the k-fold colouring problem we will use in our case study. Here the single abstract
decision variable is a binary relation. Having that information directly in the variable type, as
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opposed to reconstructing it from a constraint model-level representation likely composed of
a constrained matrix of more primitive decision variables, is a significant aid to reformulation.
Furthermore, a single reformulated specification can be refined into a variety of both models
and solving paradigms, allowing us to gain a fuller picture of performance. We implement our
system via rewrite rules expressed in the Graph Programs 2 language [3, 18], applied to the
abstract syntax tree of an input specification. Given the small size of ESSENCE specifications
and the efficiency of the GP2 system in applying graph rewriting rules, the rewriting process
has negligible cost. When the type of the decision variable is transformed, the solution must
be converted to the original type for verification and presentation to the user. A constraint
solver can be employed to solve the solution re-assignment specification straightforwardly.
We demonstrate this process even in the case of the nested types supported by ESSENCE.

Our work makes the following primary contributions:

Automated class-level model reformulation via a library of graph transformation rewrite

rules.

Inverse rewriting of solutions for presentation and verification.

A case study using k-fold graph colouring.

Listing 1 ESSENCE specification of k-fold graph colouring, a variant in which each node in a given
graph must be assigned k colours with no pair of nodes connected by an edge sharing a colour.
$ k-fold graph colouring with k=coloursPerNode, out of numberColours
given n : int
letting vertices be domain int(0..n-1)
given edges : relation (irreflexive) of ( vertices * vertices )
given numberColours : int(1..)
given coloursPerNode : int(1..)
letting colours be domain int(1..numberColours)
find colouring : relation (size n*coloursPerNode) of (vertices * colours)
such that

$ endpoints of edges do not share colours
forAll (u,v) in edges .
(forAll colourAssignment in colouring .
(colourAssignment[1] = u) -> !((v,colourAssignment[2]) in colouring)),

$ enforce number of colours per node
forAll u : vertices .
coloursPerNode = (sum colourAssignment in colouring .
toInt (colourAssignment[1] = u))

2 Rewriting via graph transformation

Reformulation can be conceptualised in various ways. In this study, we have chosen to
pursue a specific framework for reformulation based on rewriting. The specification at
each stage of reformulation can be represented as an abstract syntax tree (AST), from
which the specification can be recovered without loss of information. ASTs are commonly
modelled as trees, but it is also possible to replace common subtrees in the AST with
pointers, transforming the data structure into the form of a directed acyclic graph. In either
case, ASTs can be represented as graphs consisting of a set of labelled vertices and a set of
directed and labelled arcs between vertices. A node in the AST corresponds to a labelled
vertex. A graph rewriting system nondeterministically matches a pattern graph to the target
graph; if a match is found, the matched part of the target graph is replaced by a different
graph according to the rewrite rule. The details of matching and the types of rewriting may
vary, but the graph rewriting paradigm is general enough to be Turing-complete [11] and
can thus capture the desired reformulation sequences. Each reformulation in a sequence of
reformulations can be considered as a step taken by a graph rewriting system acting on the
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AST as the target graph being rewritten. Each reformulation is expressed by a graph rewrite
rule or collection of rules. In this study, we have employed the graph rewriting language
GP2 [18] to perform rewriting on the abstract syntax tree representing a specification. The
GP2 system provides a flexible language for expressing graph rewriting rules and includes an
efficient implementation of the rewriting engine optimised for sparse large graphs [3]. The
GP2 language can be used to write graph transformation rules, which are compiled using
the GP2 engine and become stand-alone C programs that can be executed independently.
In the GP2 language, graphs are defined using a set of nodes that are tuples of indices and
labels followed by a set of edges that are quadruples of indices, source nodes, target nodes
and labels.

3 Reformulating Essence specifications for performance

Conjure

[ Formats Translations
I Conjure API
N GP2 API

Figure 1 Graph showing format conversions and APIs. The white arrows within the blue area
are parts of our system of conversion and the green arrows show interactions with GP2.

The ESSENCE language allows problems to be expressed concisely using high level types
such as sets, multisets, functions, relations, and partitions, which may be nested — sets of
functions, multisets of relations, etc. ESSENCE specifications are typically solved by a process
of refinement via the CONJURE tool [1], where the high level types are transformed into
collections of more primitive variables, such as matrices of integers, in the solver-independent
ESSENCE PRIME language [17]. The SAVILE ROw tool [16] further transforms a model in
ESSENCE PRIME into input suitable for a particular constraint, SAT, or SMT solver.

This complex chain of refinement and transformation is sensitive to the ESSENCE specific-
ation with which it starts, and so an initial specification may not always lead to optimal
solving performance. Therefore, reformulating the specification becomes necessary to improve
the efficiency of the solving process. This is often where modellers, through their expertise,
can obtain the largest gains in efficiency [20]. One of our objectives is to help automate
the application of reformulation rules, sourcing them both from expert modellers or those
found via other search methods and building a library of rewriting rules. An advantage
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of reformulating ESSENCE is that even a small change can produce a marked change once
refinement and parameter substitution has taken place.

The gains provided by reformulations are not only limited to faster solving time but,
crucially, can lead to smaller memory footprints across the subsequent refinement steps. In
some cases this allows problems to be solved that in their original form may not be able to
reach the solver or that could crash during solving.

In practice, a specification written in ESSENCE is turned into GP2 form by a series of
conversions and translations by following the shortest path in a conversion graph pictured
in Figure 1. We extend our previous work [21], which contains formal definitions for each
intermediate form, by adding a different representation of the AST once in GP2 form. In
our approach, instead of compounding symbols and their grammatical information into the
labels of the GP2 nodes, we add an extra branch to each node separating the two. Once in
GP2 form, any of the available precompiled rules can be applied to the AST of the ESSENCE
specification. In this particular study, we are interested in a rewrite rule designed to showcase
the potential of high-level reformulations making use of relaxation, auxiliary domains, type
nesting and constraint rewrites. A fragment of our rule set can be seen in Listing 2, where
the left-hand side of the rule is designed to match the portion of the AST in which a relation
is declared. The rule takes three parameters, specName, decisionVariableName and findPos,
two strings and an integer, respectively, capturing the fact that the labels on those nodes
can be any value and can be reused during the rewriting step. Labels in quotes such as
"find" and "relation" must be matched exactly. Nodes in the interface are nodes that will
be preserved. In this case, all the nodes are preserved, and only one label is changed by
attaching the flag # red that will trigger subsequent rules.

Listing 2 Tagging a decision variable node implemented in GP2.

Main = tagRelationDecisionVariable
tagRelationDecisionVariable(specName,decisionVariableName:string;findPos,n:int)
\\ left-hand side of the rule
L

(n0, specName) (nl, "find") (n2, decisionVariableName) (n3, "relation")
|

(el, n0, n1, findPos) (e2, ni, n2, 1) (e3, n2, n3, 1)
]
=>
\\ right-hand side of the rule
L

(n0, specName) (nl, "find") (n2, decisionVariableName) (n3, "relation"# red)
|

(el, n0, n1, findPos) (e2, ni, n2, 1) (e3, n2, n3, 1)
]

interface = { nO,n1, n2, n3 }

4 Case Study: k-fold fractional graph colouring

In order to demonstrate our reformulation system in operation we present a case study with
fractional graph colouring, which is a generalisation of the graph colouring problem where
multiple distinct colours are assigned to each vertex of a graph such that pairs of neighbouring
vertices have no colours in common. In the literature it can be found under various different
names: Graph Multicoloring Problem, Generalised Graph Colouring Problem, k-Fold Graph
Colouring, Fractional Graph Colouring, or Fractional Vertex Colouring. It has been used in
the past to showcase constraint programming techniques [10, 19] and it is commonly found
in the context of scheduling applications [12]. We will refer to the integer value k in k-fold
as the number of colours each node must be assigned, and we will refer to the number of
colours available explicitly.
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In our case study we take as the input specification that is shown in Listing 1, which
employs a binary relation to encode the graph and a binary relation for the decision variable
linking each node with the colours assigned to it. This is a natural choice as graphs are
commonly modelled using relations, and more than one colour has to be mapped to each
node. Two constraints enforce that adjacent vertices do not share the same colour and that
the correct number of colours is assigned to each vertex (via a common pseudo-Boolean
counting pattern).

From this initial specification, it is possible to activate a sequence of rewriting rules that
reformulate the specification with the objective of improving its performance. It can be noted
that the number of colours necessary for each vertex is the same for all vertices, the colours
assigned to each vertex could be expressed as a set of fixed size, eliminating the need for the
counting constraint. This means that one rewrite of the rule should be able to introduce
auxiliary domains and another eliminate a constraint. It follows that the decision variable be
could turned into a total function that maps each vertex to a set of colours, further removing
the need for a quantification, as referring to a set allows referring to all the colours of a
specific node in one simpler statement. This requires a rewrite that turns the relation into a
function and modifies the existing constraint.

The graph transformation rules proceed as follows:

1. A rewrite rule matches a decision variable of arbitrary name and relation type, that is also
mentioned in a quantification with a counting pattern, plus a second relation where the
binary relation is over the same object (which is common for graphs) and a quantification
over it. Occurrences of the decision variable colouring are bold blue in Figure 3.

2. The rule tags the decision type’s node, the head of the subtree of the constraint to be
eliminated and the inner quantification of the colour that checks that adjacent vertices
do not have the same colours. The tagged nodes are highlighted in red in Figure 3.

3. Then, an additional rule propagates the tags in each subtree.

4. Then, a rule is applied until possible to match each pair of tagged nodes; the deeper of
the two is removed, and so is the edge between them. This is to avoid deleting a node
while leaving a dangling edge.

5. The remaining tagged nodes are used to glue in the desired subtrees, while removing the
single node’s tags. Three rules match the specific tagged nodes and add the auxiliary
domain, the new decision variable and the reformulated constraint.

6. The remaining tagged nodes are removed, together with their parent edge.

Listing 3 Rewritten specification.

given n : int(0..100)

letting vertices be domain int(0..n-1)

given edges : relation (irreflexive) of ( vertices * vertices )
given numberColours : int(1..n)

given coloursPerNode : int(1..n)

letting colours be domain int(1..numberColours)

letting coloursSet be domain set (size coloursPerNode) of colours

find colouring : function (total) vertices --> coloursSet
such that
forAll (u,v) in edges .

colouring(v) intersect colouring(u) = {}

This procedure adds an auxiliary domain of type set that will host the colours, a new
decision variable of type function mapping the left-hand side of the relation to the auxiliary
set, and shrinks the constraints to simply require an empty intersection of two sets. The
final product can be seen in Listing 3.
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given n : int
letting vertices be domain int(0..n-1)
given edges : relation (irreflexive) of ( vertices * vertices )
given numberColours : int(1..)
given coloursPerNode : int(1..)
letting colours be domain int(1..numberColours)
find colouring : F@T@EI6A (size n*coloursPerNode) of (vertices * colours)
such that
forAll (u,v) in edges [

(forAll colourAssignment in colouring fi

(colourAssignment[1] = u) -> !((v,colourAssignment[2]) in colouring))

forAll u : vertices .
coloursPerNode = (sum colourAssignment in colouring .
toInt(colourAssignment[1] = u))

Figure 2 Parts of the specification that are interacted with during rewrite. Matched subtrees
are highlighted in light blue. Names that can be used as free parameters are coloured in dark blue.
Tagged nodes are highlighted in red.

4.1 Empirical evaluation of the reformulation

In order to test the performance of the reformulated abstract specification we have developed
an instance generator that produces input parameters; this uses a simple grid search spanning
a range of values for n nodes and e edges for the graph to be coloured, ¢ colours available
and cpn colours per nodes enforced. Values. n: 10-40, step size 10. e: n? x 20% — 80%, step
size 5%. cpn: 2-5, step size 1. ¢: cpn*4-6, step size 1.

Each instance is solved using both models and the results are plotted in Figure 4.

Our system can also translate graphs from the Python library NetworkX into ESSENCE
relations, which allows the conversion of any of its library of graphs into instances by supplying
the ¢ and cpn parameters. A small selection of iconic graphs has been used for additional
testing, such as obtaining the 5-fold colouring of the dodecahedral graph in Figure 3.

Figure 3 5-fold colouring of the dodecahedral graph.
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Figure 4 Performance of the two specifications: we plot instances (with selected names listed
along the horizontal axis), the reformulated specifications are green, the old specifications are blue,
gold indicates both specifications time out, red indicates that the old specification times out.

5 Converting solutions to their original type

When a reformulation changes the type of a decision variable, the solution produced by
the solver will be of the transformed type. To verify that the solution of the reformulated
specification is, in fact, a solution to the original problem, we must convert it back to its
original type. To achieve this, we create a converter based on an ESSENCE specification, which
requires the solution of the reformulated problem as a parameter. The converter (illustrated
in Listing 4) includes all the variables declared in the original specification, along with all of
its parameters. Additionally, it must have a decision variable with exactly the same name as
the original specification, and a constraint mapping assignments of the new type to the old
type. Solving this parameterised specification produces a solution that follows the structure
of the original type that can be checked using CONJURE with the -validate-solution option.
We timed the conversion of all the solutions obtained by solving the instances produced
in the previous section. The worst-performing conversion took 0.56 seconds, with an overall
average of 0.459 seconds. This overhead is significant only for the smallest instances.

Listing 4 Solution Converter

given n : int(0..100)

given numberColours, coloursPerNode : int(1..n)

letting vertices be domain int(0..n-1)

letting colours be domain int(1..numberColours)

letting coloursSet be domain set (size coloursPerNode) of colours

given solution : function (total) vertices --> coloursSet

find colouring : relation (size n*coloursPerNode) of ( vertices * colours )

such that forAll item in defined(solution) . forAll colour in solution(item) . colouring(item, colour)
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REE Spec Instance REE Solution
given n :int(1..) H letting fSeq be sequence(<Val1>,<Val2>)
letting values be domain <any> lettlng n be 2
letting seq be domain sequence (size n) of N
values + Pipeline
find fSeq : seq
such that

| _REE o
Starting Spec > Converter

given n :int(1..) letting/n be 2 \
letting index be domain int(1..n letting index be domain int(1..n)

Ietting Values be domain <(any>) Names and domains letting Values be domain <any>

letting fType be domain function spaces combination letting fType be domain function Index -->
index—Values Values

. - givenlfseq : sequence of Values
i

\bum that forAll i : Index . (fSeq(i) = (i)
| Solution
. B letting f be functi
Conjure validate S
2 - <Val2>)

Figure 5 Specification of the solution’s converter and production flow. In this simpler example a
function indexed by integers is turned into a sequence and back again.

6 Conclusion

In this paper we have demonstrated an automated system for the reformulation of ESSENCE
specifications. Our system, implemented in the Graph Programs 2 language, reformulates
specifications of parameterised problem classes, giving the key advantage of reformulation
effort being amortised over the set of instances from the class to be solved. High-level
ESSENCE specifications are concise and highly structured, aiding rewriting. Furthermore,
they are not tied to any particular solving paradigm, hence specification reformulations may
be tested against a variety of modelling and solving choices.

Future work. Thanks to this foundational work, we have created the basis necessary to
develop a system where the rewrite rules are produced automatically, or semi-automatically,
starting from pairs of specifications that express possible reformulations. Automating the
creation of rewrite rules would not only free the developer from the need to write GP2
programs but also collect rewrites from past specifications that have been refined over time
in order to populate a rewriting library by distilling previous expert knowledge sitting idle
in existing catalogues and literature. Another enticing future direction is the production of
rewrite rules using search methods, which could be applied to any arbitrary specification. The
aim would be to produce reformulations that improve the current model under consideration
and are reusable.
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