10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Trustworthy and Explainable Decision-Making for
Workforce allocation

Guillaume Povéda =29 ®

Airbus SAS, FR

Andreas Strahl =
Airbus Aerostructures, GmbH

Mark Hall =
Airbus Operations Ltd, UK

Ryma Boumazouza &0
Airbus SAS, FR

Santiago Quintana-Amate &0
Airbus Operations Ltd, UK

Nahum Alvarez 20
Airbus SAS, FR

Ignace Bleukx ©®
DTAI, KU Leuven, Leuven, Belgium

Dimos Tsouros & @®
DTAI, KU Leuven, Leuven, Belgium

Héléne Verhaeghe =6
DTAI, KU Leuven, Leuven, Belgium

Tias Guns 20
DTAI, KU Leuven, Leuven, Belgium

—— Abstract

In industrial contexts, effective workforce allocation is crucial for operational efficiency. This paper
presents an ongoing project focused on developing a decision-making tool designed for workforce
allocation, emphasizing the explainability to enhance its trustworthiness. Our objective is to create
a system that not only optimises the allocation of teams to scheduled tasks but also provides
clear, understandable explanations for its decisions, particularly in cases where the problem is
infeasible. By incorporating human-in-the-loop mechanisms, the tool aims to enhance user trust and
facilitate interactive conflict resolution. We implemented our approach on a prototype tool/digital
demonstrator intended to be evaluated on a real industrial scenario both in terms of performance
and user acceptability.

2012 ACM Subject Classification Human-centered computing — User centered design

Keywords and phrases CP, Explainable CP, Trustworthy Al

Acknowledgements This work has been partially funded by the European Union’s Horizon Europe
Research and Innovation program under the grant agreement TUPLES No 101070149

1 Introduction

In industrial contexts, effective workforce allocation is a cornerstone of operational efficiency,
directly impacting productivity, cost management, and overall organizational performance.
The complex nature of workforce allocation involves balancing numerous constraints, such as
employee availability, skill levels, regulatory requirements, and task priorities. As industries

mailto:guillaume.poveda@airbus.com
https://orcid.org/0000-0001-9175-3240
mailto:andreas.strahl@airbus.com
mailto:mark.hall@airbus.com
mailto:ryma.boumazouza@airbus.com
https://orcid.org/0000-0002-3940-8578
mailto:santiago.quintana-amate@airbus.com
https://orcid.org/0000-0002-9308-6717
mailto:nahum.alvarez@airbus.com
https://orcid.org/0000-0003-1717-2506
mailto:ignace.bleukx@kuleuven.be
https://orcid.org/0000-0001-7810-8351
mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
mailto:helene.verhaeghe@kuleuven.be
https://orcid.org/0000-0003-0233-4656
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

Trustworthy and Explainable Decision-Making for Workforce allocation

increasingly rely on automated decision-making tools to manage these complexities, the need
for trustworthiness and explainability in these systems becomes paramount.

This paper introduces an ongoing project dedicated to the development of a decision-
making tool tailored to workforce allocation. The core objective of this tool is to not only
optimise the allocation of teams to scheduled tasks but also to ensure that the decision-making
process is transparent and understandable to users. Current industrial workforce allocation
often functions as a black box, primarily due to the complexity and opacity of the underlying
processes. This lack of transparency hinders the general understandability of the solution
and is detrimental to the development and deployment of automatic solutions using AT tools.
Our work aims to address this problem by improving transparency and explainability of
workforce allocation systems. Complicating workforce allocation processes, are the need
for real-time adaptation of the workforce under disruptions. The necessary knowledge to
manage these disruptions is often implicit, ‘hidden’ in the planners’ heads, making it difficult
for Al-generated solutions to gain acceptance unless they can clearly explain their rationale.
Our approach not only seeks to enhance the transparency of workforce allocation but also
aims to ensure that Al solutions can effectively communicate their decision-making processes,
thereby increasing trust and acceptance among human planners.

Another significant challenge in workforce allocation is the occurrence of infeasible
situations, where the constraints cannot be satisfied simultaneously. Traditional systems may
simply fail or produce sub-optimal solutions without providing clear explanations, leading
to user frustration and mistrust. To overcome this, our tool incorporates human-in-the-
loop mechanisms, enabling users to interact with the system to understand and resolve
infeasibilities. These explainability features are designed to enhance user trust and facilitate
effective conflict resolution, making the decision-making process more collaborative and
reliable.

In summary, this paper presents an integrated approach to workforce allocation, em-
phasizing the importance of trustworthiness and explainability. By integrating interactive
features and human-in-the-loop mechanisms, we aim to create a decision-making tool that is
not only effective but also transparent and user-friendly, paving the way for more reliable
and collaborative industrial operations.

Looking ahead, future plans include evaluating the tool’s effectiveness. This evaluation
will focus on assessing the tool’s impact on operational efficiency, user understandability and
acceptance, and its ability to handle real-world workforce allocation scenarios.

1.1 Overview of workforce allocation challenges

In the industrial landscape, efficient workforce allocation or task scheduling is a critical
component of operational success. We consider here the operational problem of assigning
teams of workers, to a set of already scheduled tasks, in a manner that optimises workers
utilization and meets various operational constraints. Furthermore, workers have different
availability slots; in real scenarios, uncertainty (represented by accidents, illnesses or simply
time delays in other tasks) may further modify this pre-established availability.

To address this, we have already developed a decision-making tool relying on constraint
programming (CP) [34], a powerful paradigm well-suited for solving complex allocation
problems. While we will describe this tool in detail in the next section, it is important to
note that even with a highly performant solver, eXplainable AT (XAI) is essential to ensure
the trustworthiness and acceptance of Al solutions in workforce allocation.

Despite the technical robustness of CP solvers, their adoption in industrial settings is
often hindered by a perceived lack of transparency and lack of user interaction capabilities.

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

1

@
o

133

G. Povéda et al.

Decision-makers and end-users frequently struggle to understand the rationale behind the
solver’s outputs, particularly when the problem is infeasible. This can lead to mistrust and
underusage of the technology, ultimately diminishing its potential benefits. Also, the actual
modelling of the problem may be challenging as the modelling experts are often not the final
users of the decision-making tool.

To overcome these challenges, our project focuses on integrating explainability and
trustworthiness into the CP-based decision-making tool. By providing clear, comprehensible
explanations for the solver’s decisions and highlighting reasons for infeasibilities, we aim
to build greater user trust and facilitate more effective human-computer collaboration.
Interactive features are also being developed to allow users to engage with the tool, explore
alternative solutions, and iteratively restore feasibility when conflicts arise.

This paper outlines our ongoing efforts to create an explainable and trustworthy work-
force allocation tool. We demonstrate the implementation of interactive conflict resolution
mechanisms and discuss our plans for evaluating these features.

1.2 Explainability in Constraint Programming

Explainability in AT has evolved significantly over time, driven by the need to make Al systems
more transparent, trustworthy, and user-friendly. The authors in [6] broadly categorized
the questions that explanations in Al aim to answer into three classes: What and Why
(What made/Why did the system reach this outcome?), Why not and What if (Why did
the system not reach a different outcome? What if different information were used?),
and How (How can I modify the system to obtain a more desirable outcome with the
existing information?). This categorization helps understand the progression and focus of
explainability efforts in various Al methodologies, including machine reasoning (MR) and
machine learning (ML). Different methodologies have addressed these explainability questions
(see [10, 16, 18, 19, 24, 26, 27, 28, 29, 33, 35, 37]).

The remainder of this section focuses on the specific application of XAl techniques within
the domain of constraint programming, especially in workforce allocation and scheduling
problems.

Constraint Programming is a powerful method at the intersection of AT and OR, for
solving combinatorial problems. CP involves specifying constraints that need to be satisfied
and finding solutions that meet these constraints. Explainability is crucial in CP, particularly
for workforce allocation and scheduling, where decision-makers need to understand the
rationale behind the allocation decisions. Different existing methods are used to enhance
explainability in CP and can be categorized as:

Explanation of Constraints: Making the constraints and their roles in the decision-making

process clear to users.

Solution Traceability: Allowing users to trace back the steps and decisions made by the

CP solver to understand how a particular solution was reached (e.g., [1]).

Conflict Explanation: Identifying and explaining conflicts or infeasibilities when no

solution can be found, which is particularly important for iterative problem-solving and

debugging (e.g., [22, 25]).

A significant focus within explainable constraint solving is on the latter and is about
explaining why a set of constraints is unsatisfiable. Many of these methods [4, 15, 17, 20, 21,
22, 23, 25] aim to identify a minimal unsatisfiable subset (MUS) - an irreducible subset of
constraints which causes the model to be unsatisfiable.

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Trustworthy and Explainable Decision-Making for Workforce allocation

» Definition 1 (Minimal Unsatisfiable Subset [23]). Given an unsatisfiable set of constraints
C, a subset U C C is a Minimal Unsatisfiable Subset if and only if U is unsatisfiable and
every strict subset U' C U is satisfiable

Such explanations are interesting because they pinpoint the exact constraints responsible
for the inconsistency, allowing users to focus their efforts on resolving specific issues. Recently,
research has also been directed towards advising users on how to restore feasibility [12, 36],
notably by identifying the minimal correction subset (MCS) [3].

» Definition 2 (Minimal Correction Subset [23]). Given an unsatisfiable set of constraints C,
a subset M C C' is a Minimal Correction Subset if an only if C'\ M is satisfiable, and for
every strict subset M’ C M, C\ M’ is unsatisfiable.

An MCS is particularly useful because it identifies an irreducible set of constraints that,
when modified or relaxed, can restore the feasibility of the entire system. By focusing on
such a minimal set, users can implement the least disruptive changes necessary to resolve
conflicts, which helps maintain the integrity of the original constraint problem as much as
possible. However, there remains a shortage of tools that effectively explain why a problem
is inconsistent.

2 Problem definition

The problem consists of assigning teams of workers to tasks in a large-scale industrial setting,
involving several hundreds of daily activities. We will consider the set of tasks to accomplish
as already scheduled in time, each of them needs to be allocated to a team of workers. Any
given team of workers can’t be allocated to two activities at the same time neither do 2 tasks
in a row when there is some geographical constraint such transportation time that makes it
impossible. Each team has its own calendar of availability or set of skills that can restrict the
set of activities it can be allocated to. In this section, we will introduce the needed notations
and formulate the base constraint model implemented to solve it:

2.1 Notations

1. A the set of activities to accomplish

2. W the set of worker teams available

3. VYa € A, start, € N end, € N, the start and end time of the activity a

4. Ya € A, comp, € 2" stores the subset of worker teams compatible with the activity
a. Similarly we can define binary indicator comp binary, ., € {0,1},Va € A,Yw € W
storing the same information.

5. S is a list of activity pair (a;,a;) that should be allocated to the same team.

2.2 Constraint model

In this section, we detail the CP formulation implemented for the problem. A Boolean
formulation showed the best performance using the different solvers we tested in our backend
application (like Ortools CP-SAT [32], Exact [7], and Gurobi [13]).

Variables

1. Let Va € A,w € W,allocg,w € {0,1} be the allocation variable. A value of 1 will
correspond to given worker team w being allocated to the activity a.

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

G. Povéda et al.

2. Let Yw € W, used,, € {0,1}, be the Boolean variable indicating if a given team w is
allocated to any of activities a € A

Constraints

1. Each task in allocated : Va € A, ZwGW allocgy =1
2. Non-Overlapping constraint :
Va € A we denote neigh(a) = {a’ € A s.t (endy > start,) A end, > starty } the set of
overlapping activities of activity a, then Vw € W, a’ € neigh(a), alloc, , + allocgs 4 <1
3. Compeatibility constraint : Va € A, w € W, ~comp_ binary, ., — —allocg .,
4. Same allocation constraint :
V(ai,a2) € S,Yw € W, allocg, . = allocg, 4
5. Used team constraint : Va € A, w € W, allocg ., — used,,
6. Aiming at speeding up solver we introduce two main additional kinds of constraint, one
redundant for the overlapping constraint, and one adding symmetry breaking :
a. Clique constraints :
Va € A, let overlapstart(a) = {a’ € A, start, < start, < end, } the set of task also
executed at time start, (including a), then this set constitutes a clique of overlapping
tasks. We add the following constraint :
Va € A,Yw e W, >
b. Symmetry breaking: Some teams € W can execute the same set of tasks for the given
time horizon. Hence, they are equivalent and tasks can be assigned to any of those
teams without changing the validity of the allocation. Clearly, this means equivalent
teams are symmetric and we add lexleader symmetry breaking constraints imposing

a’€overlapstart(a) alloca/’w <1

an ordering of the teams [8, 39]. Several formulations are possible, but from limited
testing, we found adding the ordering on the used variables seemed most promising.
It’s worth noticing that this constraint will not impact solution quality, only when the
objective itself treats the teams as equivalent.

Objective functions

The main objective of interest here will be the number of different teams used, therefore we
aim at minimizing), ., used,. Several other objectives are under study, notably adding
fairness objectives, and ensuring a balanced workload among the used teams. The inclusion
of those objective functions has currently only been studied in the pure optimisation and
performance side and not on the explainable, therefore they will not be considered in the
remaining of the paper.

Example of solution

We can plot a Gantt chart to visualise the solution, as shown in Figure 1. Each row of
the chart represents the schedule for a specific team of workers w € W. Due to the non-
overlapping constraint (defined in constraint nb. 2), a feasible solution ensures that there
are no overlapping activities within each row of the Gantt chart.

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Trustworthy and Explainable Decision-Making for Workforce allocation

Gantt chart

Team index
o r N W & U o N ® ©

02 00:30 02 01:00 0201:30 02 02:00 02 02:30 02 03:00 02 03:30 02 04:00 02 04:30
Time

Figure 1 Example of Gantt chart built to visualise a solution to the workforce allocation problem

3 Explainable Decision-making tool for workforce allocation

The development of a decision-making tool for workforce allocation is driven by the need to
enhance operational efficiency, but such a tool introduces new trustworthiness requirements
in order to get user acceptance. The following figure 2 outlines the primary workflow of the
tool.

Solving
Refinement

Compare
results

Solve
optimization
problem

Load &
Explore Data

Conflict
Workload o Computation
&

data

= Visualization

server

Infeasibility
restoration

Figure 2 Workflow of the Decision-Making Tool

Our tool integrates explainability components addressing two major needs: conflict
computation and visualisation, and interactive infeasibility restoration. The explainability
features of our tool are tailored to scenarios where the workforce allocation problem is
infeasible, where the constraints cannot be satisfied simultaneously (e.g., when there are
insufficient resources available to allocate all tasks). By addressing these infeasibility cases,
the tool aims to provide insights into its decision-making process.

3.1 Conflicts Computation and Visualisation

In complex allocation or scheduling scenarios, conflicts are often inevitable due to various
reasons: overlapping tasks, resource constraints, and varying team availabilities. Our tool
computes and visualises these conflicts, allowing users to see where and why the allocation
process encounters issues. Visual representations of conflicts enable users to quickly grasp
problematic areas and understand the constraints causing these issues. This transparency

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

G. Povéda et al.

builds trust in the system, as users can see the logical reasoning behind the solver’s decisions.
Finding the best way to visualise the conflicts depends on user preferences, and this is the
subject of ongoing work.

3.2 Interactive Infeasibility Restoration

Confronting infeasible problems is a common challenge in real-world applications [5]. Tradi-
tional CP solvers may report infeasibility without providing guidance on resolution. However,
our tool offers the users an interactive method to solve conflicts in the problem; upon detecting
an infeasible problem, users are presented with several methods to restore feasibility:

Resolving MUS conflicts interactively (local conflict resolution): This method
involves resolving each MUS conflict one by one in an interactive manner (by selecting
a constraint in the MUS to relax). Local conflict restoration refers to the process of
addressing each conflict individually within its localized context, rather than attempting
to solve all conflicts simultaneously. Users are guided through the process of addressing
each local conflict sequentially, enabling a step-by-step restoration of feasibility.

Using MCS interactively (global conflict resolution): Instead of addressing conflicts
individually, this approach computes one of the minimal correction subsets (MCS) to
resolve all conflicts simultaneously on a problem-wide scale. Global conflict restoration
refers to the process of identifying and correcting a minimal set of constraints that, when
adjusted, will restore feasibility to the entire system. In our tool, we consider the scenario
where the user can choose only a subset of the relaxations provided by a single MCS, and
users may want to mix-and-match constraints relaxations from different MCSes. Hence,
our tool re-computes a new MCS after a user has relaxed some constraints, making the
process iterative and interactive.

Fine-tuning task priorities (prioritized conflict resolution): This method involves
solving and optimising a relaxed version of the problem where task allocations become
optional. Each task is given a priority/weight value which is taken into account in the
optimisation criteria. Users can interactively change the priority level of tasks, allowing a
lot of flexibility in the way the problem feasibility is restored, e.g. which tasks are more
likely to remain or be removed.

By involving users in the resolution process, our tool ensures a more transparent, inter-
active, and trustworthy decision-making experience.

3.3 Implementation

The workforce allocation model was implemented using the CPMpy library [11], a flexible
and user-friendly tool for modelling constraint programming (CP) problems. CPMpy offers
an intuitive API that closely mirrors the functionality of numpy, making it accessible and
easy to use for those familiar with numerical computing in Python. Using this modelling
library allows us to test different solver backends, including ortools-cpsat [32], gurobi [13],
pysat [14], or exact [7, 9]. It also includes some native utilities to compute MUSes or MCSes,
which we use extensively in this research for conflict analysis and feasibility restoration.

In practice, several customization options regarding optimisation and explainability
aspects are available through our configuration parameters tab within the tool, as illustrated
in Figure 3.

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

Trustworthy and Explainable Decision-Making for Workforce allocation

ALLOCATION = availability an resource used ©

Params constraints

Constraint sttings task_allocated Constraint settngs pair_overlap. Constraint settings allowed._team Constraint settings clique_overlap.

Constraint sttings tear_i_used Constraint settngs symmetries Constraint settings same_allocation Constraint settings allowed_alloc

hard v hard v soft v soft v

traint settings nb_max_teams.

soft v

Params model encoding

Path to activty description fle Param include_all_binary_vars Param include._pair_overiap Param overlapping_advanced param symmbreak_on_used
feg
Completed_Actiites_Taktcrew.
)

True v ke v Tme v Tme v

MUS settings

Infeasibilty Method Solver nside mus Method Mus Vizu Conflict

ADD_CONSTRAINT v eact v ms v MAXSAT v

Figure 3 Configure the methods parameters tab

4 Case study/Application example

The problems to be solved in the industrial use case range from scheduling tasks over a
six-hour period to creating a full day (24-hour) schedule, involving the allocation of a few
dozen activities to possibly up to one thousand. The number of available resources (i.e. our
W teams) varies over time, but typically there are about 20 (|| = 20).

4.1 Preliminary results

In this section, we present our initial findings on the computational performance of the
optimisation method and on the explainability components across various scenarios. For both
the optimisation and explainability experiments, we generated 20 instances of the allocation
problem with different lengths: 6, 8 and 24 hours. These instances were generated to reflect
a real-world scenario with specific constraints and conditions derived from historical data.
This analysis serves as a foundation for further refinement and optimisation of our approach.

4.1.1 Optimisation results

Despite the workforce allocation problem being NP-Hard (akin to a list colouring graph
problem), preliminary empirical runs and benchmarks on historical data have demonstrated
good performance. Our preliminary results (Table 1) consider the mean computation time to
optimality (or cut to timeout) for different lengths of the instances, different CP formulations
of the CP model, and different solver settings. The column clique refers to the redundant
clique constraint 6a and symmetry to the symmetry breaking constraint on used team 6b.
The solver backend used is Ortools’ CP-Sat solver, a state-of-the-art solver for CP problems
[30, 31]. CP-Sat heavily relies on a portfolio approach to accomplish its search and using this
feature usually will improve a lot the solving performance. To check this on our use case, we
tested 2 different settings: using 1 or 6 search worker (column #w). As we expected, CP-Sat
is more efficient in its multi-worker settings and found optimal solution on all instances in
less than 1 second in average. From the multi-worker settings instances, we also observed
that symmetry and redundant constraints have a clear negative effect on both initialisation
time of the model and on solving time. On the contrary, in the mono-worker mode, the use of
the symmetry constraints helps prove optimality for more instances and offers a computation
time advantage (but still those have worse performance than their multi-worker equivalents).

These results show the efficiency of using CP-Sat with its full features activated, but it is

301

302

303

304

305

306

307

308

309

310

311

312

313

314

G. Povéda et al.

#w len clique symmetry t_init(s) t_solve(s) t_total(s) optimal
1 6 False False 0.03 12.21 12.24 0.43
1 6 False True 0.03 2.01 2.04 0.95
1 6 True False 0.06 10.98 11.04 0.48
1 6 True True 0.06 2.03 2.09 0.95
1 8 False False 0.04 13.13 13.17 0.45
1 8 False True 0.04 2.93 2.97 0.95
1 8 True False 0.08 12.99 13.06 0.40
1 8 True True 0.08 2.44 2.52 0.95
1 24 False False 0.12 14.64 14.76 0.30
1 24 False True 0.12 5.54 5.66 0.85
1 24 True False 0.33 14.61 14.94 0.30
1 24 True True 0.33 5.06 5.39 0.85
6 6 False False 0.03 0.06 0.09 1.00
6 6 False True 0.03 0.18 0.21 1.00
6 6 True False 0.06 0.06 0.12 1.00
6 6 True True 0.06 0.17 0.24 1.00
6 8 False False 0.04 0.08 0.12 1.00
6 8 False True 0.04 0.19 0.23 1.00
6 8 True False 0.08 0.09 0.17 1.00
6 8 True True 0.08 0.22 0.30 1.00
6 24 False False 0.12 0.29 0.41 1.00
6 24 False True 0.12 0.57 0.69 1.00
6 24 True False 0.34 0.32 0.66 1.00
6 24 True True 0.33 0.72 1.06 1.00

Table 1 Mean computation time for different lengths of problem instances (len column), modeling
parameters (clique, symmetry), and solver config on number of search worker (#w)) We split the
table in 2 to distinguish the multi and mono-worker settings of CPSat solver. Remark : Each solve
call has a timeout of 30 seconds, so when optimality is not proven (like in many tests in mono-mode
setting), the solve time is equal to the timeout.

important to note that these results do not constitute a comprehensive benchmark. Moreover,
upon closer inspection of the results, we noticed mainly the LP-subsolver implemented
in OR-tools contributed to finding a better bound during the search. Hence, it may be
interesting to evaluate the performance of LP-specific solvers too such as Gurobi. Overall,
further analysis and more extensive testing is required to validate and generalize these
findings. Nonetheless, these results are promising and indicate the potential efficiency of CP
solvers in handling complex workforce allocation problems.

4.1.2 Explainability results

We run a benchmark study to compute minimal unsatisfiable subset (MUS) conflicts across
various scenarios by categorizing the problem constraints into soft and hard constraints
directly from our tool interface (see Figure 3). Hard constraints were necessary conditions
that must be met, while soft constraints were desirable but not mandatory. This process
involved determining which constraints could not be satisfied simultaneously by extracting an
MUS. The algorithm used for finding such a MUS is based on the well-known deletion-based

10

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Trustworthy and Explainable Decision-Making for Workforce allocation

method [25], which extracts any MUS from the problem. As this algorithm greatly benefits
incremental solving [2], we used the Exact solver [7], a pseudo-Boolean solver which supports
solving under assumptions.

The study was conducted on the same instances introduced in previous sections. The
evaluation focuses on the time taken to compute one explanation of infeasibility for each
instance and the size of the explanation, measured in terms of the number of constraints
involved in the MUS.

Length Average Time (s) Average Explanation Length

6 0.60 10
8 0.86 10
24 1.13 10

Table 2 Average Calculation Time and Explanation Length by Instance Length

The results (Table 2) indicate that as the instance length increases from 6 to 24 hours, the
average calculation time for generating single explanations of infeasibility also increases (from
0.60s to 1.13s), while the average length of the explanations remains relatively consistent even
for bigger instances. These results suggest that longer instances require more computation
time, but the complexity of the explanations does not significantly increase. However, further
experiments are necessary to draw definitive conclusions.

4.2 Visualising Conflicts and Restoring Feasibility: A Practical
Demonstration of our tool

To showcase the capabilities of our explainability techniques and enable their evaluation by
end users, we developed a demonstrator application using Streamlit!'. This section offers
an overview of its features and functionalities.

4.2.1 Solving the Problem

The first step in our application consists of encoding and solving the allocation problem
using the CPMpy library. Our tool allows to load data and configure various parameters, such
as choosing the optimisation solver (see Figure 3). Once the problem is encoded, the solver
is called to find an optimal solution. The results, including the allocation of teams to tasks,
are then displayed to the user (see Figure 4).

4.2.2 Solution Refinement

After the solver generates a solution, users have the opportunity to review it and modify
it. The application allows users to propose alternative allocations overriding the solver’s
decisions. This interactive review process ensures that users can make adjustments based on
their expertise and knowledge of the specific context (see Figure 5).

! an open-source app framework for Machine Learning and Data Science projects (https://streamlit.io/)

344

345

346

347

348

349

350

351

352

353

354

355

356

G. Povéda et al.

Which model o you want tosolve?
@D Mode ALLOCATION = resource used

Tuplef T

Uploading Files

Dragand drop fle here

[N] |3 |
L 11 [| | |_§_
Browse s [1] I NN
(N B]

Launch optimisation with CPMpyTeamllocationSolver!

Figure 4 Solving tab of the app, showing the results after calling the solver.

Table of activities

NN NN NN NN

Figure 5 Interactive solving tab (Manual/Automatic)

4.2.3 Conflict Computation and Visualisation

When the problem resolution is infeasible, the application computes and provides a visualisa-
tion of the conflicting constraints causing infeasibility. Conflicts are described with a basic
text description of each of the constraints, along with a Gantt representation of the problem
highlighting the activities involved in the conflict (see Figure 6). The displayed Gantt is built
by solving an optimisation problem: it is the result of optimising the number of allocated
tasks, e.g. it computes a size-maximal satisfiable subset. These tasks are then visualised, and
non-allocated tasks are added to a virtual team we call "Unset", the top line of the plot. This
method allows to have a visual representation even when dealing with infeasible problems
where no solution (nor visualisation thereof) exists as is.

4.2.4 Feasibility Restoration

If the solver encounters an infeasible problem, our application offers several methods for
restoring feasibility. These methods are designed to be interactive by involving the user in

11

12

357

358

359
360
361
362
363

364

365

366
367
368

369

Trustworthy and Explainable Decision-Making for Workforce allocation

Constraint visualisation Description of Mus
task 15 is allocated
task 10isallocated
task 17 s allocated
task 14 is allocated
task221s allocated
task 11 is allocated
task 19 is allocated
overlap between tasks (12, 13, 22,15, 10,17, 19, 11, 18, 14]
task 18 is allocated
task 13 s allocated
task12s allocated

Nomore than 9 teams used

Figure 6 Conflicts visualisation solving tab, with "Unset" line at the top.

the resolution process.

Local Conflict Resolution

One approach to restoring feasibility is by resolving conflicts one by one interactively. The
application identifies a minimum unsatisfiable subset (MUS) of constraints and guides users
through the process of addressing each conflict individually. This local resolution method
allows users to make targeted adjustments. The process is illustrated in Figure 7. In our
preliminary experiment, similarly to the scenario depicted, few iterations were required to
restore feasibility, and we surmise that this observation remains true for real scenarios.

Problem infeasible x Problem feasible

1. Selection of

anencontie:seeacmssmogen the task to drop Do this .
iteratively
Currently dropped constraints until the lll--l- I
problem is I ——
feasible again
2. Add task to

the “dropped o 1 L]]
tasks” table " ' ‘

Currently dropped constraints :

Final list of constraints
dropped iteratively to
resolve the conflicts

Figure 7 Process of conflict resolution with MUS

Use of Minimum Correction Subset

Alternatively, users can employ a minimal correction subset (MCS) to resolve conflicts
globally as shown in Figure 8. The application identifies a minimal set of constraints that
need to be corrected to restore full feasibility. In the interactive setup, we consider that users
can accept to remove only a subset of the constraints proposed by the tool (which would not

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

G. Povéda et al.

completely restore the feasibility). We envisage providing multiple MCSs in the future if
none of the corrective actions fits user preference.

Scenario:

Today, swecan't

Let's explore the reason for infeasibility and tryto solve it |

Hello, your problem seems infeasible.

Constraint visualisation

Startinfeasibility

%, ently dropped constraints.

Figure 8 Conflict resolution with MCS

Fine-tuning task priorities

Finally, the application provides the option to solve relaxed versions of the problem using a
weighted Max-CSP formulation (optimisation variant of the satisfiability problem where each
constraint is assigned a weight, and the goal is to maximize the sum of the weights of the
satisfied constraints). We relax the constraint requiring each task to be allocated (constraint 1
of our model) and maximize the sum of allocated activities, where each activity a is weighted
by a weight w,. This method can easily generate several alternative solutions, maximizing
the weighted objective. If the user is unhappy with the relaxed solutions, it is possible to
interact with the solver by setting different w, weights on some chosen activities. This
method should lead to feasible solutions obtained using domain expert constraint relaxations
(see Figure 9).

5 Conclusion & Discussion on Future work

Our decision-making tool for workforce allocation combines the power of constraint program-
ming with interactive and explainable features. By involving users in the decision-making
process and providing clear explanations of conflicts and resolutions, we aim to enhance
the trust and adoption of CP solvers in industrial settings. The prototype application

13

14

388
389
390
391
392
393
394
395
396
397
308
399
400
401
402
403
404
405
406
407
408

409

411
412
413

414

Trustworthy and Explainable Decision-Making for Workforce allocation

St soutons 1. Initial optimal solution (top line shows 'unset' tasks)

2. Reassigning task’s weight

2.2Ch it t: .
2.1 Select an activity / angefts prionty Repeat this
process

i Lo e literatively until

: ' a satisfactory
sestsalutions) . zsragag:;‘:rsto solution is
3. New optimal solution ponding

different priority levels

achieved.

Figure 9 Conflict resolution with the fine-tuning task priorities method. The second image shows
an example of changed priority/weight for some chosen task, leading to new solver propositions.

demonstrates the practical implementation of these concepts and serves as a foundation
for further development and evaluation within the TUPLES project. Our next step in the
research is to evaluate the relevance of the generated explanations from a user perspective.
These XAI methods should be assessed by expert users who can judge the usability and
applicability of XAI/CP technology components in realistic scenarios. Hence, we plan to
conduct scientifically rigorous user studies to determine preferred methods for infeasibility
restoration. We also plan another user study focused more on a visual interface that will
gather user feedback on conflict visualisations and description methods. We are currently
implementing various visualisation approaches and textual description techniques to enhance
user acceptability.

In this paper, we focused on a pure allocation problem where the activities are already
scheduled and can’t be shifted in time. In a more realistic model, the possibility of shifting
tasks (e.g. changing the start time) in the feasibility restoration step should be considered.
However, this would require to transform the model into a scheduling problem, and we are
currently working in this direction. This raises interesting scalability challenges for the XAI
technology bricks such as MUS computation. To address the interpretability of large conflict
explanations, we could consider using step-wise explanations [1]. By breaking down complex
explanations into simpler steps, we can create short, interpretable sequences that collectively
clarify the issue. Also, in this more complex setup where we consider scheduling constraints,
there might be implicit constraints that the planners keep in mind but are not articulated
in the problem formulation. Hence we are looking at the techniques from the literature on
constraint acquisition [38].

—— References

1 Ignace Bleukx, Jo Devriendt, Emilio Gamba, Bart Bogaerts, and Tias Guns. Simplifying
step-wise explanation sequences. In 29th International Conference on Principles and Practice
of Constraint Programming (CP 2023). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2023.

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

465

G. Povéda et al.

10

11

12

13

14

15

16

17

18

19

20

Ignace Bleukx, Tias Guns, and Dimos Tsouros. Explainable Constraint Solving: A hands-on
tutorial, February 2024. doi:10.5281/zenodo.10694140.

Ryma Boumazouza, Fahima Cheikh-Alili, Bertrand Mazure, and Karim Tabia. A symbolic
approach for counterfactual explanations. In International Conference on Scalable Uncertainty
Management, pages 270-277. Springer, 2020.

Ryma Boumazouza, Fahima Cheikh-Alili, Bertrand Mazure, and Karim Tabia. Asteryx: A
model-agnostic sat-based approach for symbolic and score-based explanations. In Proceedings
of the 30th ACM International Conference on Information & Knowledge Management, pages
120-129, 2021.

J.W. Chinneck. Feasibility and Infeasibility in Optimization:: Algorithms and Computational
Methods. International Series in Operations Research & Management Science. Springer US,
2007. URL: https://books.google.fr/books?id=BiBgz6AIRpMC.

Kristijonas Cyras, Ramamurthy Badrinath, Swarup Kumar Mohalik, Anusha Mujumdar,
Alexandros Nikou, Alessandro Previti, Vaishnavi Sundararajan, and Aneta Vulgarakis Feljan.
Machine reasoning explainability. arXiv preprint arXiv:2009.00418, 2020.

Jo Devriendt. Exact solver, 2023. URL: https://gitlab.com/JoD/exact.

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International
Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9,
2012, pages 49-56. IEEE Computer Society, 2012. doi:10.1109/ICTAI.2012.16.

Jan Elffers and Jakob Nordstrom. Divide and conquer: Towards faster pseudo-boolean solving.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18, pages 1291-1299. International Joint Conferences on Artificial Intelligence
Organization, 7 2018. doi:10.24963/ijcai.2018/180.

M Sinan Géniil, Dilek Onkal, and Michael Lawrence. The effects of structural characteristics
of explanations on use of a dss. Decision support systems, 42(3):1481-1493, 2006.

Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

Sharmi Dev Gupta, Begum Genc, and Barry O’Sullivan. Finding counterfactual explanations
through constraint relaxations. arXiv preprint arXiv:2204.03429, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for pro-
totyping with SAT oracles. In SAT, pages 428-437, 2018. doi:10.1007/978-3-319-94144-8_
26.

Alexey Ignatiev, Alessandro Previti, Mark Liffiton, and Joao Marques-Silva. Smallest mus
extraction with minimal hitting set dualization. In International Conference on Principles
and Practice of Constraint Programming, pages 173—-182. Springer, 2015.

Hilary Johnson and Peter Johnson. Explanation facilities and interactive systems. In Pro-
ceedings of the 1st international conference on Intelligent user interfaces, pages 159-166,
1993.

Ulrich Junker. Quickxplain: Conflict detection for arbitrary constraint propagation algorithms.
In IJCAI’01 Workshop on Modelling and Solving problems with constraints, volume 4, 2001.

Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. Principles of
explanatory debugging to personalize interactive machine learning. In Proceedings of the 20th
international conference on intelligent user interfaces, pages 126-137, 2015.

Carmen Lacave and Francisco J Diez. A review of explanation methods for bayesian networks.
The Knowledge Engineering Review, 17(2):107-127, 2002.

Niklas Lauffer and Ufuk Topcu. Human-understandable explanations of infeasibility for
resource-constrained scheduling problems. In ICAPS 2019 Workshop XAIP, 2019.

15

https://doi.org/10.5281/zenodo.10694140
https://books.google.fr/books?id=BiBgz6AIRpMC
https://gitlab.com/JoD/exact
https://doi.org/10.1109/ICTAI.2012.16
https://doi.org/10.24963/ijcai.2018/180
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26

16

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

Trustworthy and Explainable Decision-Making for Workforce allocation

21

22

23

24

25

26

27

28
29

30
31

32

33

34

35

36

37

38

39

Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Integration of Al
and OR Techniques in Constraint Programming: 14th International Conference, CPAIOR
2017, Padua, Italy, June 5-8, 2017, Proceedings 14, pages 77-93. Springer, 2017.

Mark H Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast, flexible
mus enumeration. Constraints, 21:223-250, 2016.

Mark H Liffiton and Karem A Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40:1-33, 2008.

Brian Y Lim and Anind K Dey. Toolkit to support intelligibility in context-aware applications.
In Proceedings of the 12th ACM international conference on Ubiquitous computing, pages
13-22, 2010.

Joao Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications. In 2010
40th IEEE International Symposium on Multiple- Valued Logic, pages 9-14. IEEE, 2010.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
intelligence, 267:1-38, 2019.

Sina Mohseni, Niloofar Zarei, and Eric D Ragan. A multidisciplinary survey and framework for
design and evaluation of explainable ai systems. ACM Transactions on Interactive Intelligent
Systems (TiiS), 11(3-4):1-45, 2021.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Bernard Moulin, Hengameh Irandoust, Micheline Bélanger, and Gaélle Desbordes. Explanation
and argumentation capabilities: Towards the creation of more persuasive agents. Artificial
Intelligence Review, 17(3):169-222, 2002.

Laurent Perron. Or-tools.

Laurent Perron, Frédéric Didier, and Steven Gay. The CP-SAT-LP Solver. In Roland
H. C. Yap, editor, 29th International Conference on Principles and Practice of Constraint
Programming (CP 2023), volume 280 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 3:1-3:2, Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.
CP.2023.3, doi:10.4230/LIPIcs.CP.2023.3.

Laurent Perron and Vincent Furnon. Or-tools, 11 2022. URL: https://developers.google.
com/optimization/.

Alun Preece. Asking ‘why’in ai: Explainability of intelligent systems—perspectives and
challenges. Intelligent Systems in Accounting, Finance and Management, 25(2):63-72, 2018.
Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. FElsevier, 2006. URL:
https://www.sciencedirect.com/science/bookseries/15746526/2.

Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus Robert
Miiller. Explainable ai—preface. In Ezplainable Al: Interpreting, Fxplaining and Visualizing
Deep Learning, pages v—vii. Springer, 2019.

Ilankaikone Senthooran, Gleb Belov, Kevin Leo, Michael Wybrow, Matthias Klapperstueck,
Tobias Czauderna, Mark Wallace, and Maria Garcia De La Banda. Human-centred feasibility
restoration. In International Conference on Principles and Practice of Constraint Programming
2021, page 49. Schloss Dagstuhl, 2021.

Kacper Sokol and Peter Flach. Explainability fact sheets: A framework for systematic
assessment of explainable approaches. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pages 56—67, 2020.

Dimosthenis Tsouros, Senne Berden, and Tias Guns. Learning to learn in interactive constraint
acquisition. Proceedings of the AAAI Conference on Artificial Intelligence, 38(8):8154-8162,
Mar. 2024. URL: https://ojs.aaai.org/index.php/AAAT/article/view/28655, doi:10.
1609/aaai.v38i8.28655.

Toby Walsh. General symmetry breaking constraints. In Frédéric Benhamou, editor, Principles
and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006,

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.3
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.sciencedirect.com/science/bookseries/15746526/2
https://ojs.aaai.org/index.php/AAAI/article/view/28655
https://doi.org/10.1609/aaai.v38i8.28655
https://doi.org/10.1609/aaai.v38i8.28655
https://doi.org/10.1609/aaai.v38i8.28655

517

518

G. Povéda et al.

Nantes, France, September 25-29, 2006, Proceedings, volume 4204 of Lecture Notes in Computer
Science, pages 650—664. Springer, 2006. doi:10.1007/11889205_46.

17

https://doi.org/10.1007/11889205_46

	1 Introduction
	1.1 Overview of workforce allocation challenges
	1.2 Explainability in Constraint Programming

	2 Problem definition
	2.1 Notations
	2.2 Constraint model

	3 Explainable Decision-making tool for workforce allocation
	3.1 Conflicts Computation and Visualisation
	3.2 Interactive Infeasibility Restoration
	3.3 Implementation

	4 Case study/Application example
	4.1 Preliminary results
	4.1.1 Optimisation results
	4.1.2 Explainability results

	4.2 Visualising Conflicts and Restoring Feasibility: A Practical Demonstration of our tool
	4.2.1 Solving the Problem
	4.2.2 Solution Refinement
	4.2.3 Conflict Computation and Visualisation
	4.2.4 Feasibility Restoration

	5 Conclusion & Discussion on Future work

