
Trustworthy and Explainable Decision-Making for1

Workforce allocation2

Guillaume Povéda #�3

Airbus SAS, FR4

Andreas Strahl #5

Airbus Aerostructures, GmbH6

Mark Hall #7

Airbus Operations Ltd, UK8

Ryma Boumazouza #�9

Airbus SAS, FR10

Santiago Quintana-Amate #�11

Airbus Operations Ltd, UK12

Nahum Alvarez #�13

Airbus SAS, FR14

Ignace Bleukx # �15

DTAI, KU Leuven, Leuven, Belgium16

Dimos Tsouros #�17

DTAI, KU Leuven, Leuven, Belgium18

Hélène Verhaeghe #�19

DTAI, KU Leuven, Leuven, Belgium20

Tias Guns #�21

DTAI, KU Leuven, Leuven, Belgium22

Abstract23

In industrial contexts, effective workforce allocation is crucial for operational efficiency. This paper24

presents an ongoing project focused on developing a decision-making tool designed for workforce25

allocation, emphasizing the explainability to enhance its trustworthiness. Our objective is to create26

a system that not only optimises the allocation of teams to scheduled tasks but also provides27

clear, understandable explanations for its decisions, particularly in cases where the problem is28

infeasible. By incorporating human-in-the-loop mechanisms, the tool aims to enhance user trust and29

facilitate interactive conflict resolution. We implemented our approach on a prototype tool/digital30

demonstrator intended to be evaluated on a real industrial scenario both in terms of performance31

and user acceptability.32

2012 ACM Subject Classification Human-centered computing → User centered design33

Keywords and phrases CP, Explainable CP, Trustworthy AI34

Acknowledgements This work has been partially funded by the European Union’s Horizon Europe35

Research and Innovation program under the grant agreement TUPLES No 10107014936

1 Introduction37

In industrial contexts, effective workforce allocation is a cornerstone of operational efficiency,38

directly impacting productivity, cost management, and overall organizational performance.39

The complex nature of workforce allocation involves balancing numerous constraints, such as40

employee availability, skill levels, regulatory requirements, and task priorities. As industries41

mailto:guillaume.poveda@airbus.com
https://orcid.org/0000-0001-9175-3240
mailto:andreas.strahl@airbus.com
mailto:mark.hall@airbus.com
mailto:ryma.boumazouza@airbus.com
https://orcid.org/0000-0002-3940-8578
mailto:santiago.quintana-amate@airbus.com
https://orcid.org/0000-0002-9308-6717
mailto:nahum.alvarez@airbus.com
https://orcid.org/0000-0003-1717-2506
mailto:ignace.bleukx@kuleuven.be
https://orcid.org/0000-0001-7810-8351
mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
mailto:helene.verhaeghe@kuleuven.be
https://orcid.org/0000-0003-0233-4656
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155

2 Trustworthy and Explainable Decision-Making for Workforce allocation

increasingly rely on automated decision-making tools to manage these complexities, the need42

for trustworthiness and explainability in these systems becomes paramount.43

This paper introduces an ongoing project dedicated to the development of a decision-44

making tool tailored to workforce allocation. The core objective of this tool is to not only45

optimise the allocation of teams to scheduled tasks but also to ensure that the decision-making46

process is transparent and understandable to users. Current industrial workforce allocation47

often functions as a black box, primarily due to the complexity and opacity of the underlying48

processes. This lack of transparency hinders the general understandability of the solution49

and is detrimental to the development and deployment of automatic solutions using AI tools.50

Our work aims to address this problem by improving transparency and explainability of51

workforce allocation systems. Complicating workforce allocation processes, are the need52

for real-time adaptation of the workforce under disruptions. The necessary knowledge to53

manage these disruptions is often implicit, ‘hidden’ in the planners’ heads, making it difficult54

for AI-generated solutions to gain acceptance unless they can clearly explain their rationale.55

Our approach not only seeks to enhance the transparency of workforce allocation but also56

aims to ensure that AI solutions can effectively communicate their decision-making processes,57

thereby increasing trust and acceptance among human planners.58

Another significant challenge in workforce allocation is the occurrence of infeasible59

situations, where the constraints cannot be satisfied simultaneously. Traditional systems may60

simply fail or produce sub-optimal solutions without providing clear explanations, leading61

to user frustration and mistrust. To overcome this, our tool incorporates human-in-the-62

loop mechanisms, enabling users to interact with the system to understand and resolve63

infeasibilities. These explainability features are designed to enhance user trust and facilitate64

effective conflict resolution, making the decision-making process more collaborative and65

reliable.66

In summary, this paper presents an integrated approach to workforce allocation, em-67

phasizing the importance of trustworthiness and explainability. By integrating interactive68

features and human-in-the-loop mechanisms, we aim to create a decision-making tool that is69

not only effective but also transparent and user-friendly, paving the way for more reliable70

and collaborative industrial operations.71

Looking ahead, future plans include evaluating the tool’s effectiveness. This evaluation72

will focus on assessing the tool’s impact on operational efficiency, user understandability and73

acceptance, and its ability to handle real-world workforce allocation scenarios.74

1.1 Overview of workforce allocation challenges75

In the industrial landscape, efficient workforce allocation or task scheduling is a critical76

component of operational success. We consider here the operational problem of assigning77

teams of workers, to a set of already scheduled tasks, in a manner that optimises workers78

utilization and meets various operational constraints. Furthermore, workers have different79

availability slots; in real scenarios, uncertainty (represented by accidents, illnesses or simply80

time delays in other tasks) may further modify this pre-established availability.81

To address this, we have already developed a decision-making tool relying on constraint82

programming (CP) [34], a powerful paradigm well-suited for solving complex allocation83

problems. While we will describe this tool in detail in the next section, it is important to84

note that even with a highly performant solver, eXplainable AI (XAI) is essential to ensure85

the trustworthiness and acceptance of AI solutions in workforce allocation.86

Despite the technical robustness of CP solvers, their adoption in industrial settings is87

often hindered by a perceived lack of transparency and lack of user interaction capabilities.88

G. Povéda et al. 3

Decision-makers and end-users frequently struggle to understand the rationale behind the89

solver’s outputs, particularly when the problem is infeasible. This can lead to mistrust and90

underusage of the technology, ultimately diminishing its potential benefits. Also, the actual91

modelling of the problem may be challenging as the modelling experts are often not the final92

users of the decision-making tool.93

To overcome these challenges, our project focuses on integrating explainability and94

trustworthiness into the CP-based decision-making tool. By providing clear, comprehensible95

explanations for the solver’s decisions and highlighting reasons for infeasibilities, we aim96

to build greater user trust and facilitate more effective human-computer collaboration.97

Interactive features are also being developed to allow users to engage with the tool, explore98

alternative solutions, and iteratively restore feasibility when conflicts arise.99

This paper outlines our ongoing efforts to create an explainable and trustworthy work-100

force allocation tool. We demonstrate the implementation of interactive conflict resolution101

mechanisms and discuss our plans for evaluating these features.102

1.2 Explainability in Constraint Programming103

Explainability in AI has evolved significantly over time, driven by the need to make AI systems104

more transparent, trustworthy, and user-friendly. The authors in [6] broadly categorized105

the questions that explanations in AI aim to answer into three classes: What and Why106

(What made/Why did the system reach this outcome?), Why not and What if (Why did107

the system not reach a different outcome? What if different information were used?),108

and How (How can I modify the system to obtain a more desirable outcome with the109

existing information?). This categorization helps understand the progression and focus of110

explainability efforts in various AI methodologies, including machine reasoning (MR) and111

machine learning (ML). Different methodologies have addressed these explainability questions112

(see [10, 16, 18, 19, 24, 26, 27, 28, 29, 33, 35, 37]).113

The remainder of this section focuses on the specific application of XAI techniques within114

the domain of constraint programming, especially in workforce allocation and scheduling115

problems.116

Constraint Programming is a powerful method at the intersection of AI and OR, for117

solving combinatorial problems. CP involves specifying constraints that need to be satisfied118

and finding solutions that meet these constraints. Explainability is crucial in CP, particularly119

for workforce allocation and scheduling, where decision-makers need to understand the120

rationale behind the allocation decisions. Different existing methods are used to enhance121

explainability in CP and can be categorized as:122

Explanation of Constraints: Making the constraints and their roles in the decision-making123

process clear to users.124

Solution Traceability: Allowing users to trace back the steps and decisions made by the125

CP solver to understand how a particular solution was reached (e.g., [1]).126

Conflict Explanation: Identifying and explaining conflicts or infeasibilities when no127

solution can be found, which is particularly important for iterative problem-solving and128

debugging (e.g., [22, 25]).129

A significant focus within explainable constraint solving is on the latter and is about130

explaining why a set of constraints is unsatisfiable. Many of these methods [4, 15, 17, 20, 21,131

22, 23, 25] aim to identify a minimal unsatisfiable subset (MUS) - an irreducible subset of132

constraints which causes the model to be unsatisfiable.133

4 Trustworthy and Explainable Decision-Making for Workforce allocation

▶ Definition 1 (Minimal Unsatisfiable Subset [23]). Given an unsatisfiable set of constraints134

C, a subset U ⊆ C is a Minimal Unsatisfiable Subset if and only if U is unsatisfiable and135

every strict subset U ′ ⊊ U is satisfiable136

Such explanations are interesting because they pinpoint the exact constraints responsible137

for the inconsistency, allowing users to focus their efforts on resolving specific issues. Recently,138

research has also been directed towards advising users on how to restore feasibility [12, 36],139

notably by identifying the minimal correction subset (MCS) [3].140

▶ Definition 2 (Minimal Correction Subset [23]). Given an unsatisfiable set of constraints C,141

a subset M ⊆ C is a Minimal Correction Subset if an only if C \ M is satisfiable, and for142

every strict subset M ′ ⊊ M , C \ M ′ is unsatisfiable.143

An MCS is particularly useful because it identifies an irreducible set of constraints that,144

when modified or relaxed, can restore the feasibility of the entire system. By focusing on145

such a minimal set, users can implement the least disruptive changes necessary to resolve146

conflicts, which helps maintain the integrity of the original constraint problem as much as147

possible. However, there remains a shortage of tools that effectively explain why a problem148

is inconsistent.149

2 Problem definition150

The problem consists of assigning teams of workers to tasks in a large-scale industrial setting,151

involving several hundreds of daily activities. We will consider the set of tasks to accomplish152

as already scheduled in time, each of them needs to be allocated to a team of workers. Any153

given team of workers can’t be allocated to two activities at the same time neither do 2 tasks154

in a row when there is some geographical constraint such transportation time that makes it155

impossible. Each team has its own calendar of availability or set of skills that can restrict the156

set of activities it can be allocated to. In this section, we will introduce the needed notations157

and formulate the base constraint model implemented to solve it:158

2.1 Notations159

1. A the set of activities to accomplish160

2. W the set of worker teams available161

3. ∀a ∈ A, starta ∈ N, enda ∈ N, the start and end time of the activity a162

4. ∀a ∈ A, compa ∈ 2W stores the subset of worker teams compatible with the activity163

a. Similarly we can define binary indicator comp_binarya,w ∈ {0, 1}, ∀a ∈ A, ∀w ∈ W164

storing the same information.165

5. S is a list of activity pair (ai, aj) that should be allocated to the same team.166

2.2 Constraint model167

In this section, we detail the CP formulation implemented for the problem. A Boolean168

formulation showed the best performance using the different solvers we tested in our backend169

application (like Ortools CP-SAT [32], Exact [7], and Gurobi [13]).170

Variables171

1. Let ∀a ∈ A, w ∈ W, alloca,w ∈ {0, 1} be the allocation variable. A value of 1 will172

correspond to given worker team w being allocated to the activity a.173

G. Povéda et al. 5

2. Let ∀w ∈ W, usedw ∈ {0, 1}, be the Boolean variable indicating if a given team w is174

allocated to any of activities a ∈ A175

Constraints176

1. Each task in allocated : ∀a ∈ A,
∑

w∈W alloca,w = 1177

2. Non-Overlapping constraint :178

∀a ∈ A we denote neigh(a) = {a′ ∈ A s.t (enda′ > starta) ∧ enda ≥ starta′} the set of179

overlapping activities of activity a, then ∀w ∈ W, a′ ∈ neigh(a), alloca,w + alloca′,w ≤ 1180

3. Compatibility constraint : ∀a ∈ A, w ∈ W, ¬comp_binarya,w → ¬alloca,w,181

4. Same allocation constraint :182

∀(a1, a2) ∈ S, ∀w ∈ W, alloca1,w = alloca2,w183

5. Used team constraint : ∀a ∈ A, w ∈ W, alloca,w → usedw184

6. Aiming at speeding up solver we introduce two main additional kinds of constraint, one185

redundant for the overlapping constraint, and one adding symmetry breaking :186

a. Clique constraints :187

∀a ∈ A, let overlapstart(a) = {a′ ∈ A, starta′ ≤ starta < enda′} the set of task also188

executed at time starta (including a), then this set constitutes a clique of overlapping189

tasks. We add the following constraint :190

∀a ∈ A, ∀w ∈ W,
∑

a′∈overlapstart(a) alloca′,w ≤ 1191

b. Symmetry breaking: Some teams ∈ W can execute the same set of tasks for the given192

time horizon. Hence, they are equivalent and tasks can be assigned to any of those193

teams without changing the validity of the allocation. Clearly, this means equivalent194

teams are symmetric and we add lexleader symmetry breaking constraints imposing195

an ordering of the teams [8, 39]. Several formulations are possible, but from limited196

testing, we found adding the ordering on the used variables seemed most promising.197

It’s worth noticing that this constraint will not impact solution quality, only when the198

objective itself treats the teams as equivalent.199

Objective functions200

The main objective of interest here will be the number of different teams used, therefore we201

aim at minimizing
∑

w∈W usedw. Several other objectives are under study, notably adding202

fairness objectives, and ensuring a balanced workload among the used teams. The inclusion203

of those objective functions has currently only been studied in the pure optimisation and204

performance side and not on the explainable, therefore they will not be considered in the205

remaining of the paper.206

Example of solution207

We can plot a Gantt chart to visualise the solution, as shown in Figure 1. Each row of208

the chart represents the schedule for a specific team of workers w ∈ W. Due to the non-209

overlapping constraint (defined in constraint nb. 2), a feasible solution ensures that there210

are no overlapping activities within each row of the Gantt chart.211

6 Trustworthy and Explainable Decision-Making for Workforce allocation

Figure 1 Example of Gantt chart built to visualise a solution to the workforce allocation problem

3 Explainable Decision-making tool for workforce allocation212

The development of a decision-making tool for workforce allocation is driven by the need to213

enhance operational efficiency, but such a tool introduces new trustworthiness requirements214

in order to get user acceptance. The following figure 2 outlines the primary workflow of the215

tool.216

Figure 2 Workflow of the Decision-Making Tool

Our tool integrates explainability components addressing two major needs: conflict217

computation and visualisation, and interactive infeasibility restoration. The explainability218

features of our tool are tailored to scenarios where the workforce allocation problem is219

infeasible, where the constraints cannot be satisfied simultaneously (e.g., when there are220

insufficient resources available to allocate all tasks). By addressing these infeasibility cases,221

the tool aims to provide insights into its decision-making process.222

3.1 Conflicts Computation and Visualisation223

In complex allocation or scheduling scenarios, conflicts are often inevitable due to various224

reasons: overlapping tasks, resource constraints, and varying team availabilities. Our tool225

computes and visualises these conflicts, allowing users to see where and why the allocation226

process encounters issues. Visual representations of conflicts enable users to quickly grasp227

problematic areas and understand the constraints causing these issues. This transparency228

G. Povéda et al. 7

builds trust in the system, as users can see the logical reasoning behind the solver’s decisions.229

Finding the best way to visualise the conflicts depends on user preferences, and this is the230

subject of ongoing work.231

3.2 Interactive Infeasibility Restoration232

Confronting infeasible problems is a common challenge in real-world applications [5]. Tradi-233

tional CP solvers may report infeasibility without providing guidance on resolution. However,234

our tool offers the users an interactive method to solve conflicts in the problem; upon detecting235

an infeasible problem, users are presented with several methods to restore feasibility:236

Resolving MUS conflicts interactively (local conflict resolution): This method237

involves resolving each MUS conflict one by one in an interactive manner (by selecting238

a constraint in the MUS to relax). Local conflict restoration refers to the process of239

addressing each conflict individually within its localized context, rather than attempting240

to solve all conflicts simultaneously. Users are guided through the process of addressing241

each local conflict sequentially, enabling a step-by-step restoration of feasibility.242

Using MCS interactively (global conflict resolution): Instead of addressing conflicts243

individually, this approach computes one of the minimal correction subsets (MCS) to244

resolve all conflicts simultaneously on a problem-wide scale. Global conflict restoration245

refers to the process of identifying and correcting a minimal set of constraints that, when246

adjusted, will restore feasibility to the entire system. In our tool, we consider the scenario247

where the user can choose only a subset of the relaxations provided by a single MCS, and248

users may want to mix-and-match constraints relaxations from different MCSes. Hence,249

our tool re-computes a new MCS after a user has relaxed some constraints, making the250

process iterative and interactive.251

Fine-tuning task priorities (prioritized conflict resolution): This method involves252

solving and optimising a relaxed version of the problem where task allocations become253

optional. Each task is given a priority/weight value which is taken into account in the254

optimisation criteria. Users can interactively change the priority level of tasks, allowing a255

lot of flexibility in the way the problem feasibility is restored, e.g. which tasks are more256

likely to remain or be removed.257

By involving users in the resolution process, our tool ensures a more transparent, inter-258

active, and trustworthy decision-making experience.259

3.3 Implementation260

The workforce allocation model was implemented using the CPMpy library [11], a flexible261

and user-friendly tool for modelling constraint programming (CP) problems. CPMpy offers262

an intuitive API that closely mirrors the functionality of numpy, making it accessible and263

easy to use for those familiar with numerical computing in Python. Using this modelling264

library allows us to test different solver backends, including ortools-cpsat [32], gurobi [13],265

pysat [14], or exact [7, 9]. It also includes some native utilities to compute MUSes or MCSes,266

which we use extensively in this research for conflict analysis and feasibility restoration.267

In practice, several customization options regarding optimisation and explainability268

aspects are available through our configuration parameters tab within the tool, as illustrated269

in Figure 3.270

8 Trustworthy and Explainable Decision-Making for Workforce allocation

Figure 3 Configure the methods parameters tab

4 Case study/Application example271

The problems to be solved in the industrial use case range from scheduling tasks over a272

six-hour period to creating a full day (24-hour) schedule, involving the allocation of a few273

dozen activities to possibly up to one thousand. The number of available resources (i.e. our274

W teams) varies over time, but typically there are about 20 (|W| ≈ 20).275

4.1 Preliminary results276

In this section, we present our initial findings on the computational performance of the277

optimisation method and on the explainability components across various scenarios. For both278

the optimisation and explainability experiments, we generated 20 instances of the allocation279

problem with different lengths: 6, 8 and 24 hours. These instances were generated to reflect280

a real-world scenario with specific constraints and conditions derived from historical data.281

This analysis serves as a foundation for further refinement and optimisation of our approach.282

4.1.1 Optimisation results283

Despite the workforce allocation problem being NP-Hard (akin to a list colouring graph284

problem), preliminary empirical runs and benchmarks on historical data have demonstrated285

good performance. Our preliminary results (Table 1) consider the mean computation time to286

optimality (or cut to timeout) for different lengths of the instances, different CP formulations287

of the CP model, and different solver settings. The column clique refers to the redundant288

clique constraint 6a and symmetry to the symmetry breaking constraint on used team 6b.289

The solver backend used is Ortools’ CP-Sat solver, a state-of-the-art solver for CP problems290

[30, 31]. CP-Sat heavily relies on a portfolio approach to accomplish its search and using this291

feature usually will improve a lot the solving performance. To check this on our use case, we292

tested 2 different settings: using 1 or 6 search worker (column #w). As we expected, CP-Sat293

is more efficient in its multi-worker settings and found optimal solution on all instances in294

less than 1 second in average. From the multi-worker settings instances, we also observed295

that symmetry and redundant constraints have a clear negative effect on both initialisation296

time of the model and on solving time. On the contrary, in the mono-worker mode, the use of297

the symmetry constraints helps prove optimality for more instances and offers a computation298

time advantage (but still those have worse performance than their multi-worker equivalents).299

These results show the efficiency of using CP-Sat with its full features activated, but it is300

G. Povéda et al. 9

#w len clique symmetry t_init(s) t_solve(s) t_total(s) optimal

1 6 False False 0.03 12.21 12.24 0.43
1 6 False True 0.03 2.01 2.04 0.95
1 6 True False 0.06 10.98 11.04 0.48
1 6 True True 0.06 2.03 2.09 0.95
1 8 False False 0.04 13.13 13.17 0.45
1 8 False True 0.04 2.93 2.97 0.95
1 8 True False 0.08 12.99 13.06 0.40
1 8 True True 0.08 2.44 2.52 0.95
1 24 False False 0.12 14.64 14.76 0.30
1 24 False True 0.12 5.54 5.66 0.85
1 24 True False 0.33 14.61 14.94 0.30
1 24 True True 0.33 5.06 5.39 0.85
6 6 False False 0.03 0.06 0.09 1.00
6 6 False True 0.03 0.18 0.21 1.00
6 6 True False 0.06 0.06 0.12 1.00
6 6 True True 0.06 0.17 0.24 1.00
6 8 False False 0.04 0.08 0.12 1.00
6 8 False True 0.04 0.19 0.23 1.00
6 8 True False 0.08 0.09 0.17 1.00
6 8 True True 0.08 0.22 0.30 1.00
6 24 False False 0.12 0.29 0.41 1.00
6 24 False True 0.12 0.57 0.69 1.00
6 24 True False 0.34 0.32 0.66 1.00
6 24 True True 0.33 0.72 1.06 1.00

Table 1 Mean computation time for different lengths of problem instances (len column), modeling
parameters (clique, symmetry), and solver config on number of search worker (#w)) We split the
table in 2 to distinguish the multi and mono-worker settings of CPSat solver. Remark : Each solve
call has a timeout of 30 seconds, so when optimality is not proven (like in many tests in mono-mode
setting), the solve time is equal to the timeout.

important to note that these results do not constitute a comprehensive benchmark. Moreover,301

upon closer inspection of the results, we noticed mainly the LP-subsolver implemented302

in OR-tools contributed to finding a better bound during the search. Hence, it may be303

interesting to evaluate the performance of LP-specific solvers too such as Gurobi. Overall,304

further analysis and more extensive testing is required to validate and generalize these305

findings. Nonetheless, these results are promising and indicate the potential efficiency of CP306

solvers in handling complex workforce allocation problems.307

4.1.2 Explainability results308

We run a benchmark study to compute minimal unsatisfiable subset (MUS) conflicts across309

various scenarios by categorizing the problem constraints into soft and hard constraints310

directly from our tool interface (see Figure 3). Hard constraints were necessary conditions311

that must be met, while soft constraints were desirable but not mandatory. This process312

involved determining which constraints could not be satisfied simultaneously by extracting an313

MUS. The algorithm used for finding such a MUS is based on the well-known deletion-based314

10 Trustworthy and Explainable Decision-Making for Workforce allocation

method [25], which extracts any MUS from the problem. As this algorithm greatly benefits315

incremental solving [2], we used the Exact solver [7], a pseudo-Boolean solver which supports316

solving under assumptions.317

The study was conducted on the same instances introduced in previous sections. The318

evaluation focuses on the time taken to compute one explanation of infeasibility for each319

instance and the size of the explanation, measured in terms of the number of constraints320

involved in the MUS.321

Length Average Time (s) Average Explanation Length

6 0.60 10
8 0.86 10
24 1.13 10

Table 2 Average Calculation Time and Explanation Length by Instance Length

The results (Table 2) indicate that as the instance length increases from 6 to 24 hours, the322

average calculation time for generating single explanations of infeasibility also increases (from323

0.60s to 1.13s), while the average length of the explanations remains relatively consistent even324

for bigger instances. These results suggest that longer instances require more computation325

time, but the complexity of the explanations does not significantly increase. However, further326

experiments are necessary to draw definitive conclusions.327

4.2 Visualising Conflicts and Restoring Feasibility: A Practical328

Demonstration of our tool329

To showcase the capabilities of our explainability techniques and enable their evaluation by330

end users, we developed a demonstrator application using Streamlit1. This section offers331

an overview of its features and functionalities.332

4.2.1 Solving the Problem333

The first step in our application consists of encoding and solving the allocation problem334

using the CPMpy library. Our tool allows to load data and configure various parameters, such335

as choosing the optimisation solver (see Figure 3). Once the problem is encoded, the solver336

is called to find an optimal solution. The results, including the allocation of teams to tasks,337

are then displayed to the user (see Figure 4).338

4.2.2 Solution Refinement339

After the solver generates a solution, users have the opportunity to review it and modify340

it. The application allows users to propose alternative allocations overriding the solver’s341

decisions. This interactive review process ensures that users can make adjustments based on342

their expertise and knowledge of the specific context (see Figure 5).343

1 an open-source app framework for Machine Learning and Data Science projects (https://streamlit.io/)

G. Povéda et al. 11

Figure 4 Solving tab of the app, showing the results after calling the solver.

Figure 5 Interactive solving tab (Manual/Automatic)

4.2.3 Conflict Computation and Visualisation344

When the problem resolution is infeasible, the application computes and provides a visualisa-345

tion of the conflicting constraints causing infeasibility. Conflicts are described with a basic346

text description of each of the constraints, along with a Gantt representation of the problem347

highlighting the activities involved in the conflict (see Figure 6). The displayed Gantt is built348

by solving an optimisation problem: it is the result of optimising the number of allocated349

tasks, e.g. it computes a size-maximal satisfiable subset. These tasks are then visualised, and350

non-allocated tasks are added to a virtual team we call "Unset", the top line of the plot. This351

method allows to have a visual representation even when dealing with infeasible problems352

where no solution (nor visualisation thereof) exists as is.353

4.2.4 Feasibility Restoration354

If the solver encounters an infeasible problem, our application offers several methods for355

restoring feasibility. These methods are designed to be interactive by involving the user in356

12 Trustworthy and Explainable Decision-Making for Workforce allocation

Figure 6 Conflicts visualisation solving tab, with "Unset" line at the top.

the resolution process.357

Local Conflict Resolution358

One approach to restoring feasibility is by resolving conflicts one by one interactively. The359

application identifies a minimum unsatisfiable subset (MUS) of constraints and guides users360

through the process of addressing each conflict individually. This local resolution method361

allows users to make targeted adjustments. The process is illustrated in Figure 7. In our362

preliminary experiment, similarly to the scenario depicted, few iterations were required to363

restore feasibility, and we surmise that this observation remains true for real scenarios.364

Figure 7 Process of conflict resolution with MUS

Use of Minimum Correction Subset365

Alternatively, users can employ a minimal correction subset (MCS) to resolve conflicts366

globally as shown in Figure 8. The application identifies a minimal set of constraints that367

need to be corrected to restore full feasibility. In the interactive setup, we consider that users368

can accept to remove only a subset of the constraints proposed by the tool (which would not369

G. Povéda et al. 13

completely restore the feasibility). We envisage providing multiple MCSs in the future if370

none of the corrective actions fits user preference.371

Figure 8 Conflict resolution with MCS

Fine-tuning task priorities372

Finally, the application provides the option to solve relaxed versions of the problem using a373

weighted Max-CSP formulation (optimisation variant of the satisfiability problem where each374

constraint is assigned a weight, and the goal is to maximize the sum of the weights of the375

satisfied constraints). We relax the constraint requiring each task to be allocated (constraint 1376

of our model) and maximize the sum of allocated activities, where each activity a is weighted377

by a weight wa. This method can easily generate several alternative solutions, maximizing378

the weighted objective. If the user is unhappy with the relaxed solutions, it is possible to379

interact with the solver by setting different wa weights on some chosen activities. This380

method should lead to feasible solutions obtained using domain expert constraint relaxations381

(see Figure 9).382

5 Conclusion & Discussion on Future work383

Our decision-making tool for workforce allocation combines the power of constraint program-384

ming with interactive and explainable features. By involving users in the decision-making385

process and providing clear explanations of conflicts and resolutions, we aim to enhance386

the trust and adoption of CP solvers in industrial settings. The prototype application387

14 Trustworthy and Explainable Decision-Making for Workforce allocation

Figure 9 Conflict resolution with the fine-tuning task priorities method. The second image shows
an example of changed priority/weight for some chosen task, leading to new solver propositions.

demonstrates the practical implementation of these concepts and serves as a foundation388

for further development and evaluation within the TUPLES project. Our next step in the389

research is to evaluate the relevance of the generated explanations from a user perspective.390

These XAI methods should be assessed by expert users who can judge the usability and391

applicability of XAI/CP technology components in realistic scenarios. Hence, we plan to392

conduct scientifically rigorous user studies to determine preferred methods for infeasibility393

restoration. We also plan another user study focused more on a visual interface that will394

gather user feedback on conflict visualisations and description methods. We are currently395

implementing various visualisation approaches and textual description techniques to enhance396

user acceptability.397

In this paper, we focused on a pure allocation problem where the activities are already398

scheduled and can’t be shifted in time. In a more realistic model, the possibility of shifting399

tasks (e.g. changing the start time) in the feasibility restoration step should be considered.400

However, this would require to transform the model into a scheduling problem, and we are401

currently working in this direction. This raises interesting scalability challenges for the XAI402

technology bricks such as MUS computation. To address the interpretability of large conflict403

explanations, we could consider using step-wise explanations [1]. By breaking down complex404

explanations into simpler steps, we can create short, interpretable sequences that collectively405

clarify the issue. Also, in this more complex setup where we consider scheduling constraints,406

there might be implicit constraints that the planners keep in mind but are not articulated407

in the problem formulation. Hence we are looking at the techniques from the literature on408

constraint acquisition [38].409

References410

1 Ignace Bleukx, Jo Devriendt, Emilio Gamba, Bart Bogaerts, and Tias Guns. Simplifying411

step-wise explanation sequences. In 29th International Conference on Principles and Practice412

of Constraint Programming (CP 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,413

2023.414

G. Povéda et al. 15

2 Ignace Bleukx, Tias Guns, and Dimos Tsouros. Explainable Constraint Solving: A hands-on415

tutorial, February 2024. doi:10.5281/zenodo.10694140.416

3 Ryma Boumazouza, Fahima Cheikh-Alili, Bertrand Mazure, and Karim Tabia. A symbolic417

approach for counterfactual explanations. In International Conference on Scalable Uncertainty418

Management, pages 270–277. Springer, 2020.419

4 Ryma Boumazouza, Fahima Cheikh-Alili, Bertrand Mazure, and Karim Tabia. Asteryx: A420

model-agnostic sat-based approach for symbolic and score-based explanations. In Proceedings421

of the 30th ACM International Conference on Information & Knowledge Management, pages422

120–129, 2021.423

5 J.W. Chinneck. Feasibility and Infeasibility in Optimization:: Algorithms and Computational424

Methods. International Series in Operations Research & Management Science. Springer US,425

2007. URL: https://books.google.fr/books?id=BiBgz6AIRpMC.426

6 Kristijonas Cyras, Ramamurthy Badrinath, Swarup Kumar Mohalik, Anusha Mujumdar,427

Alexandros Nikou, Alessandro Previti, Vaishnavi Sundararajan, and Aneta Vulgarakis Feljan.428

Machine reasoning explainability. arXiv preprint arXiv:2009.00418, 2020.429

7 Jo Devriendt. Exact solver, 2023. URL: https://gitlab.com/JoD/exact.430

8 Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry431

propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International432

Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9,433

2012, pages 49–56. IEEE Computer Society, 2012. doi:10.1109/ICTAI.2012.16.434

9 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving.435

In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelli-436

gence, IJCAI-18, pages 1291–1299. International Joint Conferences on Artificial Intelligence437

Organization, 7 2018. doi:10.24963/ijcai.2018/180.438

10 M Sinan Gönül, Dilek Önkal, and Michael Lawrence. The effects of structural characteristics439

of explanations on use of a dss. Decision support systems, 42(3):1481–1493, 2006.440

11 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,441

cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint442

Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.443

12 Sharmi Dev Gupta, Begum Genc, and Barry O’Sullivan. Finding counterfactual explanations444

through constraint relaxations. arXiv preprint arXiv:2204.03429, 2022.445

13 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.446

gurobi.com.447

14 Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for pro-448

totyping with SAT oracles. In SAT, pages 428–437, 2018. doi:10.1007/978-3-319-94144-8_449

26.450

15 Alexey Ignatiev, Alessandro Previti, Mark Liffiton, and Joao Marques-Silva. Smallest mus451

extraction with minimal hitting set dualization. In International Conference on Principles452

and Practice of Constraint Programming, pages 173–182. Springer, 2015.453

16 Hilary Johnson and Peter Johnson. Explanation facilities and interactive systems. In Pro-454

ceedings of the 1st international conference on Intelligent user interfaces, pages 159–166,455

1993.456

17 Ulrich Junker. Quickxplain: Conflict detection for arbitrary constraint propagation algorithms.457

In IJCAI’01 Workshop on Modelling and Solving problems with constraints, volume 4, 2001.458

18 Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. Principles of459

explanatory debugging to personalize interactive machine learning. In Proceedings of the 20th460

international conference on intelligent user interfaces, pages 126–137, 2015.461

19 Carmen Lacave and Francisco J Díez. A review of explanation methods for bayesian networks.462

The Knowledge Engineering Review, 17(2):107–127, 2002.463

20 Niklas Lauffer and Ufuk Topcu. Human-understandable explanations of infeasibility for464

resource-constrained scheduling problems. In ICAPS 2019 Workshop XAIP, 2019.465

https://doi.org/10.5281/zenodo.10694140
https://books.google.fr/books?id=BiBgz6AIRpMC
https://gitlab.com/JoD/exact
https://doi.org/10.1109/ICTAI.2012.16
https://doi.org/10.24963/ijcai.2018/180
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26

16 Trustworthy and Explainable Decision-Making for Workforce allocation

21 Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Integration of AI466

and OR Techniques in Constraint Programming: 14th International Conference, CPAIOR467

2017, Padua, Italy, June 5-8, 2017, Proceedings 14, pages 77–93. Springer, 2017.468

22 Mark H Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast, flexible469

mus enumeration. Constraints, 21:223–250, 2016.470

23 Mark H Liffiton and Karem A Sakallah. Algorithms for computing minimal unsatisfiable471

subsets of constraints. Journal of Automated Reasoning, 40:1–33, 2008.472

24 Brian Y Lim and Anind K Dey. Toolkit to support intelligibility in context-aware applications.473

In Proceedings of the 12th ACM international conference on Ubiquitous computing, pages474

13–22, 2010.475

25 Joao Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications. In 2010476

40th IEEE International Symposium on Multiple-Valued Logic, pages 9–14. IEEE, 2010.477

26 Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial478

intelligence, 267:1–38, 2019.479

27 Sina Mohseni, Niloofar Zarei, and Eric D Ragan. A multidisciplinary survey and framework for480

design and evaluation of explainable ai systems. ACM Transactions on Interactive Intelligent481

Systems (TiiS), 11(3-4):1–45, 2021.482

28 Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.483

29 Bernard Moulin, Hengameh Irandoust, Micheline Bélanger, and Gaëlle Desbordes. Explanation484

and argumentation capabilities: Towards the creation of more persuasive agents. Artificial485

Intelligence Review, 17(3):169–222, 2002.486

30 Laurent Perron. Or-tools.487

31 Laurent Perron, Frédéric Didier, and Steven Gay. The CP-SAT-LP Solver. In Roland488

H. C. Yap, editor, 29th International Conference on Principles and Practice of Constraint489

Programming (CP 2023), volume 280 of Leibniz International Proceedings in Informatics490

(LIPIcs), pages 3:1–3:2, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum491

für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.492

CP.2023.3, doi:10.4230/LIPIcs.CP.2023.3.493

32 Laurent Perron and Vincent Furnon. Or-tools, 11 2022. URL: https://developers.google.494

com/optimization/.495

33 Alun Preece. Asking ‘why’in ai: Explainability of intelligent systems–perspectives and496

challenges. Intelligent Systems in Accounting, Finance and Management, 25(2):63–72, 2018.497

34 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint498

Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. URL:499

https://www.sciencedirect.com/science/bookseries/15746526/2.500

35 Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus Robert501

Müller. Explainable ai–preface. In Explainable AI: Interpreting, Explaining and Visualizing502

Deep Learning, pages v–vii. Springer, 2019.503

36 Ilankaikone Senthooran, Gleb Belov, Kevin Leo, Michael Wybrow, Matthias Klapperstueck,504

Tobias Czauderna, Mark Wallace, and Maria Garcia De La Banda. Human-centred feasibility505

restoration. In International Conference on Principles and Practice of Constraint Programming506

2021, page 49. Schloss Dagstuhl, 2021.507

37 Kacper Sokol and Peter Flach. Explainability fact sheets: A framework for systematic508

assessment of explainable approaches. In Proceedings of the 2020 conference on fairness,509

accountability, and transparency, pages 56–67, 2020.510

38 Dimosthenis Tsouros, Senne Berden, and Tias Guns. Learning to learn in interactive constraint511

acquisition. Proceedings of the AAAI Conference on Artificial Intelligence, 38(8):8154–8162,512

Mar. 2024. URL: https://ojs.aaai.org/index.php/AAAI/article/view/28655, doi:10.513

1609/aaai.v38i8.28655.514

39 Toby Walsh. General symmetry breaking constraints. In Frédéric Benhamou, editor, Principles515

and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006,516

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.3
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.sciencedirect.com/science/bookseries/15746526/2
https://ojs.aaai.org/index.php/AAAI/article/view/28655
https://doi.org/10.1609/aaai.v38i8.28655
https://doi.org/10.1609/aaai.v38i8.28655
https://doi.org/10.1609/aaai.v38i8.28655

G. Povéda et al. 17

Nantes, France, September 25-29, 2006, Proceedings, volume 4204 of Lecture Notes in Computer517

Science, pages 650–664. Springer, 2006. doi:10.1007/11889205_46.518

https://doi.org/10.1007/11889205_46

	1 Introduction
	1.1 Overview of workforce allocation challenges
	1.2 Explainability in Constraint Programming

	2 Problem definition
	2.1 Notations
	2.2 Constraint model

	3 Explainable Decision-making tool for workforce allocation
	3.1 Conflicts Computation and Visualisation
	3.2 Interactive Infeasibility Restoration
	3.3 Implementation

	4 Case study/Application example
	4.1 Preliminary results
	4.1.1 Optimisation results
	4.1.2 Explainability results

	4.2 Visualising Conflicts and Restoring Feasibility: A Practical Demonstration of our tool
	4.2.1 Solving the Problem
	4.2.2 Solution Refinement
	4.2.3 Conflict Computation and Visualisation
	4.2.4 Feasibility Restoration

	5 Conclusion & Discussion on Future work

