
A Constraint Modelling 
Pipeline

Ian Miguel, Ozgur Akgun
University of St Andrews

ijm@st-andrews.ac.uk ozgur.akgun@st-andrews.ac.uk

mailto:ijm@st-andrews.ac.uk
mailto:ozgur.akgun@st-andrews.ac.uk


Overview: The Pipeline
• Essence: an abstract constraint 

specification language.
• Essence refined by Conjure into a 

solver-independent constraint 
model in Essence Prime.
• Tailored for a particular solving 

paradigm/solver by Savile Row.

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Automatically improving constraint models in Savile Row. P 
Nightingale, Ö Akgün, IP Gent, C Jefferson, I Miguel, P Spracklen. 
Artificial Intelligence 251, 35-61, 2017.

• Conjure: Automatic generation of constraint models from 
problem specifications. Ö Akgün, AM Frisch, IP Gent, C Jefferson, I 
Miguel, P Nightingale. Artificial Intelligence 310, 103751, 2022.

• Essence: A Constraint Language for Specifying Combinatorial 
Problems. AM Frisch, W Harvey, C Jefferson, B Martinez-
Hernandez, I Miguel. Constraints 13, 268-306, 2008.



Pre-history



Pre-history: Implied 
Constraints
• 1999: Alan Frisch and Toby Walsh are awarded UK EPSRC grant: 

Automatic Generation of Implied Constraints (GR/N16129/01) at York.
• Some early work in our thinking about implied constraints:

• Constraint generation via automated theory formation. S. Colton, I. 
Miguel. 7th CP, 575-579, 2001.

• Extensions to proof planning for generating implied constraints. 
A.M. Frisch, I. Miguel, T. Walsh. Calculemus, 130-141, 2001.

• CGRASS: A system for transforming constraint satisfaction 
problems. A.M. Frisch, I. Miguel, T. Walsh. ERCIM Workshop on 
Constraint Solving and Constraint Logic Programming, 15-30, 2002.



Pre-history: 
Modelling Patterns
• Also started thinking about modelling 

patterns:
• Matrix modelling. P. Flener, A. M. Frisch, B. Hnich, 

Z. Kiziltan, I. Miguel, T. Walsh. Workshop on 
Modelling and Problem Formulation, 2001.

• Symmetry in matrix models. P. Flener, A. M. Frisch, 
B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, T. Walsh. 
SymCon Workshop, 2001.

• Breaking row and column symmetries in matrix 
models. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, 
I. Miguel, J. Pearson, T. Walsh. CP, 546-477, 2002.

• Symmetry breaking as a prelude to implied 
constraints: A constraint modelling pattern. A. M. 
Frisch, C. Jefferson, I. Miguel. ECAI, 2004.

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 1

E.g. 2d 0/1 matrix representing 
a relation in solving Balanced 
Incomplete Block Designs



Pre-history: Refinement

• Work on abstract modelling and refinement:
• Towards CSP model reformulation at multiple levels 

of abstraction. A. M. Frisch, B. Hnich, I. Miguel, B. M. 
Smith, T. Walsh. ModRef Workshop, 2002.

• Towards automatic modelling of constraint 
satisfaction problems: A system based on 
compositional refinement. A. Bakewell, A. M. Frisch, 
I. Miguel. ModRef Workshop, 2003.

• Function variables for constraint programming. B. 
Hnich. AI Communications, 16(2), 131-132, 2003.

• Introducing ESRA, a relational language for 
modelling combinatorial problems. P. Flener, J. 
Pearson, M. Ågren. LOPSTR, 214-232, 2003.



Pre-history: First Elements 
of the Pipeline. 
• The Essence of Essence. A. M. Frisch, M. Grum, C. 

Jefferson, B. M. Hernández, I. Miguel. ModRef, 
2005.
• The rules of constraint modelling. A. M. Frisch, C. 

Jefferson, B. M. Hernández, I. Miguel. IJCAI, 109-
116, 2005.
• Tailoring solver-independent constraint models: A 

case study with Essenceʹ and Minion. I. P. Gent, I. 
Miguel, A. Rendl. SARA, 18-21, 2007.
• Minion: A fast scalable constraint solver. I. P. Gent, 

C. Jefferson, I. Miguel. ECAI, 98-102, 2006.

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving



Today

• Enter the current primary 
developers:

• Ozgur Akgun (Conjure)
• Peter Nightingale (Savile Row).

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving



The Pipeline: Essence



Constraint Modelling Pipeline: Essence

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• An abstract constraint specification 
language.
• Domain constructors, such as set, 

function, sequence, partition, 
relation, …

• Arbitrary nesting of these: set of sets, 
sequence of functions, …

• Attributes of these domains:
• Injective function, symmetric relation.

• Constraints/Operators on these 
domains:

• Projection on relations.
• Range of function.



Constraint Modelling Pipeline: Essence

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of play 
for w weeks such that no pair of golfers 
play together more than once



Constraint Modelling Pipeline: Essence

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of play 
for w weeks such that no pair of golfers 
play together more than once

Integer parameters



Constraint Modelling Pipeline: Essence

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of play 
for w weeks such that no pair of golfers 
play together more than once

Individual golfers don’t need to be identified.
Symmetry avoided.



Constraint Modelling Pipeline: Essence

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of play 
for w weeks such that no pair of golfers 
play together more than once

One highly-structured decision variable.



Constraint Modelling Pipeline: Essence

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of play 
for w weeks such that no pair of golfers 
play together more than once

The socialisation constraint

NB Having described the combinatorial structure to be found using 
Essence’s types this is the only constraint left to be stated.



The Pipeline: Conjure



Constraint Modelling Pipeline: Conjure

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• We can’t typically solve an Essence 
specification directly.
• We use the Conjure system to refine an 

Essence specification into Essence Prime.
• A subset of Essence with facilities common in 

constraint modelling languages.
• (Matrices of) Integer, Boolean variables.
• Logical, Arithmetic, Global Constraints.



Constraint Modelling Pipeline: Conjure

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Refinement proceeds from the choice of 
representation of the decision variables.
• The outer structure of sched here is a 

fixed-cardinality set.
• A natural model is via a matrix:

1 2 … w-1 w

<partition> <partition> … <partition> <partition>

Structural constraint: AllDifferent(sched)

sched



Constraint Modelling Pipeline: Conjure

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Key advantage of refinement-based approach:
• Recognise and break symmetry as it enters the model.
• By refining a set to an indexed matrix we introduce 

symmetry: permuting the weeks is solution-preserving.
• Conjure knows this and adds constraints to break this 

symmetry: 

1 2 … w-1 w

<partition> <partition> … <partition> <partition>

< < < <

(and the AllDifferent is automatically removed)



Constraint Modelling Pipeline: Conjure

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• We can think of a partition as a constrained 
set of sets: 

A 
week

1 2 .. g

1

2

..

s

Parts (i.e. groups)

Elements of each 
part (i.e. golfers)

Again, 
breaking 
symmetry

Structural constraint: AllDifferent

< <

<

<

<

<

Domain: {1, …, g x s}
Where g x s is the 
number of golfers



Constraint Modelling Pipeline: Conjure

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Giving (a) representation of sched:

Weeks
Partitions

1 2 .. g

1

2

..

s

Parts (i.e. groups)
Element
s of each 
part (i.e. 
golfers)



Constraint Modelling Pipeline: Conjure

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Conjure then refines the constraints to suit 
the representation chosen:

1 2 .. g

1 4

2 5

..

s

Parts (i.e. groups)

Elements of each 
part (i.e. golfers)

• Disallow 4, 5 in the same 
group in any other week

• How:
• Represent the 

intersection between 
parts in different 
weeks.

• Ensure size at most 1.



Constraint Modelling Pipeline: Conjure

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Conjure has alternative refinement rules for 
both decision variable and constraint 
representation.
• Allows us to explore the space of models.
• Heuristics to select models likely to be 

effective.
1 2 .. g

1 0/1

2 0/1

..

gxs 0/1

Parts (i.e. groups)

Elements of each 
part (i.e. golfers)

Structural: each column sums to s.



The Pipeline: Savile Row



Constraint Modelling Pipeline: Savile Row

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• The Essence Prime model is close to the input 
of a constraint solver.
• Savile Row is responsible for:

• Tailoring this model to a particular solver
• Or encoding to a different formalism.

• While further enhancing the model.
• E.g. Common subexpression elimination, 

tabulation. 

Social Golfers 3 weeks

3 groups, size 3

[1, 2, 3] [1, 4, 7] [1, 5, 9]

[4,5,6] [2,5,8] [2,6,7]

[7,8,9] [3,6,9] [3,4,8]

Solution to an instance of Social Golfers



Constraint Modelling Pipeline: Savile Row

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Common Subexpression Elimination Example:
• Two constraints over four variables, each with 

domain {0, ..., 10}.
• w + x + y + z = 6
• z + y + w = 5

• Making both constraints consistent 
individually does not reveal that x = 1.
• Savile Row extracts the common 

subexpression w + y + z and replaces it with a 
variable a:

• a = w + y + z
• a = 5
• x + a = 6

Largest contiguous subexpression visible 
through normalisation: y + z



Constraint Modelling Pipeline: Savile Row

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Tabulation Example:

• These complex expressions constraining the moves propagate 
poorly.

• Instead tabulate their allowed values.
• GAC on the table.



Fruitful Branches



Branches

• The Constraint Modelling Pipeline project has had several offshoots, 
some of which themselves have been developing for several years.
• Examples:

• Automated Streamlining.
• Athanor: Local search on Essence.
• AutoIG: Automatic Instance Generation.



Streamlining

• Our pipeline infrastructure also supports Streamlining:
• As first proposed by Gomes and Sellmann in:

• Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Principles and Practice of Constraint 
Programming - CP 2004, pp. 274–289. Springer (2004)

• Streamlining is an attempt to focus the search onto a promising area 
of the search space.
• Streamliners are:

• Uninferred constraints (i.e. not guaranteed to be sound), added to a constraint model.
• Will reduce the search space, sometimes drastically.
• The intention is to retain at least one solution.

Automated streamliner portfolios for constraint 
satisfaction problems. P. Spracklen, N. Dang, Ö. Akgün, 
I. Miguel. Artificial Intelligence, 319, 2023.



Automating Streamlining
• As originally conceived, streamlining is a manual process.
• For a parameterised problem class of interest:

• Solve small instances with an initial model.
• Observe solutions to these instances, looking for patterns.
• Use these patterns to conjecture candidate streamliners.
• Test these streamliners on larger and more difficult instances.

• When successful, streamlining can lead to a huge reduction in search effort.
• An automated approach is therefore desirable.



First Order Streamlining Rules
• We have a set of rules that automate the generation of streamliners 

from the structures in an Essence specification.
• Examples:

• Integer: 
• Take an odd (or similarly, even) value.
• Restrict to upper (or lower) half of values.

• Function:
• Monotonically increasing (or decreasing).
• Insist that a binary function is commutative (or non-commutative), or associative.

• Relation:
• Insist that it is reflexive, irreflexive, symmetric, …



Higher Order Streamlining Rules
• Lift first-order and higher-

order streamlining rules to work on nested domain constructors of 
Essence.
• Examples: all, half, at most one.
• So now if we have a set of integers, we can say:

• Half must be even.

• Or if we have a set of multisets of integers:
• For half of the multisets restrict the elements to the upper half of their 

domain.



Candidate Streamliners
• Streamliners can also be combined.
• Simple example:

• This integer variable should be both 
odd and restricted to the upper half 
of its domain.

• So, typically a large number of 
candidate streamliners for a 
problem class.
• Problem:

• We don’t know which will be 
effective.
• Might remove all solutions, or not help.

• We don’t know how performance 
varies between instances. 



Identifying Effective Combinations of 
Streamliners
• Two objectives:

• Applicability: The proportion of training instances for which the streamlined 
model admits a solution.

• Reduction: The mean search reduction in solving time achieved by the 
streamliner on the satisfiable instances.

• We want to search for a portfolio of Pareto-optimal streamlined 
models.

• i.e. Streamliners whose <application, reduction> pair measure is not 
dominated.



Identifying Effective Combinations of 
Streamliners

• Combining streamliners can result 
in larger performance gains.
• Ideally, we would consider the 

power set of streamliner 
combinations.
• The space can be pruned:

• If a streamliner combination has 
zero applicability, its supersets are 
not explored.

• Combinations of streamliners that 
are tagged as being mutually 
exclusive are not explored.



Monte Carlo Tree Search
• Even after pruning, the number of combinations to consider is still 

typically too large to allow exhaustive enumeration.
• To search the lattice structure for a portfolio of Pareto optimal 

streamlined models we employ a Monte Carlo Tree Search style 
algorithm:

Simulation phase uses the pipeline to evaluate the 
streamlined specification.



Instance Generation 
via AutoIG 

• Often the case that training instances required to integrate ML with CP.
• E.g. in Automated Streamlining we generate a large number of candidate 

training instances for each pair of problem class and solver via AutoIG.
• Allows users to describe the generation of instances for a given problem 

class declaratively as an instance generation model.
• Parameters to the Essence specification of the original model, which describe 

instance data that define an individual instance, are transformed into decision 
variables.

• Constraints are added to capture bounds or relationships between the instance 
data.

• Solutions to the instance generation model are instances of the original 
problem. A framework for generating informative benchmark 

instances. N Dang, O Akgun, J Espasa, I Miguel and P 
Nightingale. CP 2022.



Fragment of an Instance Generation Model

• From the transshipment problem.
• Considers the design of a distribution network, which includes a number of 

warehouses and transshipment points to serve a number of customers. 

• The instance generation model is itself parameterised.
• This is to allow the algorithm configuration tool Irace to control the instance 

generation process.

• We search for satisfiable instances that are solvable by a chosen solver 
within the solving time range of, e.g., [10,300] seconds.
• Lower bound of 10 seconds avoids trivially solvable instances, as the gain when 

applying streamliners on such instances are often negligible.



Searching for Instances

• Irace decides on an instance of the generator model.
• I.e. values for these parameters.

• Solved to produce an instance of the original model.
• This in turn is solved to evaluate its suitability for training.

• I.e. within [10,300] seconds.
• The results fed back to Irace to guide its future choices.
• Instance generation stops once a given tuning budget is exhausted.

• All instances satisfying the required properties are returned. 
• Clustering can then be used to to select a smaller representative 

subset of training instances. 



Solving Essence 
Specifications Directly.

• Rather than the refinement approach 
of the pipeline, we can attempt to 
solve an Essence specification directly.
• Athanor takes a constraint-based 

local search approach.
• Generating an initial assignment.
• Iteratively modify this assignment to

improve an objective through a 
sequence of moves.

• Selected from a neighbourhood
of assignments reachable from the 
current assignment.

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

Athanor

Athanor: high-level local search over abstract constraint 
specifications in Essence. S Attieh, N Dang, C Jefferson, I 
Miguel, P Nightingale. IJCAI 2019.



Solving Essence Specifications Directly.
• Advantage of proceeding from Essence: 

• structure apparent in an abstract 
specification of a problem can be 
exploited to generate
high quality neighbourhoods.

• Proceeds from the Essence types:
• Set, multiset, sequence, function, relation, 

and partition.

• Neighbourhoods preserve this 
structure:
• Select a set and remove an element.
• Select a set and add an element.
• Select two sets, move an element from 

one to the other: moves connections
to where they may be better used, i.e. to 
connect to more nodes.

Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

Athanor

Similar neighbourhoods for other types.



Summary



Conclusions

• The Constraint Modelling Pipeline has been in development for over 
two decades.
• A main branch, and fruitful side-projects.
• Sustained by a combination of continuity and collaboration.
• Actively interested in interfacing with your work/ideas.


