A Constraint Modelling
Pipeline

lan Miguel, Ozgur Akgun
University of St Andrews

iim@st-andrews.ac.uk ozgur.akgun@st-andrews.ac.uk

mailto:ijm@st-andrews.ac.uk
mailto:ozgur.akgun@st-andrews.ac.uk

Overview: The Pipeline

Essence

Conjure

Essence
Prime

SAT CP SMT
Solving Solving Solving

MIP
Solving

* Essence: an abstract constraint
specification language.

* Essence refined by Conjure into a
solver-independent constraint
model in Essence Prime.

* Tailored for a particular solving
paradigm/solver by Savile Row.

Automatically improving constraint models in Savile Row. P
Nightingale, O Akgiin, IP Gent, C Jefferson, | Miguel, P Spracklen.
Artificial Intelligence 251, 35-61, 2017.

Conjure: Automatic generation of constraint models from
problem specifications. O Akgiin, AM Frisch, IP Gent, C Jefferson, |
Miguel, P Nightingale. Artificial Intelligence 310, 103751, 2022.
Essence: A Constraint Language for Specifying Combinatorial
Problems. AM Frisch, W Harvey, C Jefferson, B Martinez-
Hernandez, | Miguel. Constraints 13, 268-306, 2008.

Pre-history

£

Pre-history: Implied 7
Constraints

e 1999: Alan Frisch and Toby Walsh are awarded UK EPSRC grant:
Automatic Generation of Implied Constraints (GR/N16129/01) at York.

* Some early work in our thinking about implied constraints:
« Constraint generation via automated theory formation. S. Colton, I.
Miguel. 7t CP, 575-579, 2001.

- Extensions to proof planning for generating implied constraints.
A.M. Frisch, I. Miguel, T. Walsh. Calculemus, 130-141, 2001.

« CGRASS: A system for transforming constraint satisfaction
problems. A.M. Frisch, |. Miguel, T. Walsh. ERCIM Workshop on
Constraint Solving and Constraint Logic Programming, 15-30, 2002.

A
/A

y Y
LR /-3
11 -
N P |
\(.;:
L

»
A

[/
i

Pre-history:)
Modelling Patterns m

* Also started thinking about modelling
patterns:

* Matrix modelling. P. Flener, A. M. Frisch, B. Hnich,
Z. Kiziltan, I. Miguel, T. Walsh. Workshop on

Modelling and Problem Formulation, 2001. E.g. 2d 0/1 matrix re‘presentir{g

* Symmetry in matrix models. P. Flener, A. M. Frisch, a relation in solving Balanced
B. Hnich, Z. Kiziltan, |. Miguel, J. Pearson, T. Walsh. Incomplete Block Designs
SymCon WOFkShOp, 2001. 0000111

* Breaking row and column symmetries in matrix 0011001
models. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan,
. Miguel, J. Pearson, T. Walsh. CP, 546-477, 2002. HEEEEEE

« Symmetry breaking as a prelude to implied HREEERED
constraints: A constraint modelling pattern. A. M. 1001100
Frisch, C. Jefferson, I. Miguel. ECAI, 2004. 1010010

1100001

Pre-history: Refinement

* Work on abstract modelling and refinement:

* Towards CSP model reformulation at multiple levels
of abstraction. A. M. Frisch, B. Hnich, I. Miguel, B. M.
Smith, T. Walsh. ModRef Workshop, 2002.

* Towards automatic modelling of constraint
satisfaction problems: A system based on
compositional refinement. A. Bakewell, A. M. Frisch,
|. Miguel. ModRef Workshop, 2003.

* Function variables for constraint programming. B.
Hnich. Al Communications, 16(2), 131-132, 2003.

* Introducing ESRA, a relational language for
modelling combinatorial problems. P. Flener, J.
Pearson, M. Agren. LOPSTR, 214-232, 2003.

ca l
|
r"‘

Pre-history: First Elements | &

of the Pipeline. Km

* The Essence of Essence. A. M. Frisch, M. Grum, C. gy BRESSIES
Jefferson, B. M. Hernandez, |. Miguel. ModRef,
2005.

* The rules of constraint modelling. A. M. Frisch, C
Jefferson, B. M. Hernandez, |. Miguel. IJCAI, 109-
116, 2005. o

* Tailoring solver-independent constraint models: A Prime
case study with Essence’ and Minion. |. P. Gent, I.
Miguel, A. Rendl. SARA, 18-21, 2007. S

* Minion: A fast scalable constraint solver. I. P. Gent, Row
C. Jefferson, I. Miguel. ECAI, 98-102, 2006.

Conjure

SAT
Solving Solving Solving

MIP
Solving

Today

Essence

* Enter the current primary
developers:
e Ozgur Akgun (Conjure)
* Peter Nightingale (Savile Row).

Conjure

Essence
Prime

Savile
Row

SAT CP SMT MIP
Solving Solving Solving Solving

The Pipeline: Essence

Constraint Modelling Pipeline: Essence

Essence

Conjure

Essence
Prime

SAT CP SMT
Solving Solving Solving

MIP
Solving

* An abstract constraint specification
language.

 Domain constructors, such as set,
function, sequence, partition,
relation, ...
 Arbitrary nesting of these: set of sets,
seqguence of functions, ...
 Attributes of these domains:
* Injective function, symmetric relation.

* Constraints/Operators on these
domains:
* Projection on relations.
* Range of function.

Constraint Modelling Pipeline: Essence

Essence

Conjure

Essence
Prime

SAT CP
Solving Solving

SMT
Solving

MIP
Solving

© 00Uk W+

* Example: Social Golfers Problem.

* In a golf club there are a number of
golfers who wish to play togetherin g
groups of size s. Find a schedule of play
for w weeks such that no pair of golfers
play together more than once

language Essence 1.3
given w, g, s : int(1l..)
letting Golfers be new type of size g x s

find sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

such that

forAll gl, g2 : Golfers, gl < g2 .

(sum week in sched . toInt (together({gl, g2}, week)))

<=1

Constraint Modelling Pipeline: Essence

Essence

Conjure

Essence
Prime

SAT CP
Solving Solving

SMT
Solving

MIP
Solving

* Example: Social Golfers Problem.

* In a golf club there are a number of
golfers who wish to play togetherin g
groups of size s. Find a schedule of play
for w weeks such that no pair of golfers
play together more than once

1 language Essence 1.3

2 |given w, g, s : int(1..) |
3 letting Golfers be new type of size g * s

4 find sched : set (size w) of

5 partition (regular, numParts g, partSize s)
6 from Golfers

7 such that

8 forall gl, g2 : Golfers, gl < g2 .

9 (sum week in sched . toInt (together({gl, g2}, week)))

Integer parameters

<=1

Constraint Modelling Pipeline: Essence

Essence

Conjure

Essence
Prime

SAT CP SMT
Solving Solving Solving

* Example: Social Golfers Problem.

* In a golf club there are a number of
golfers who wish to play togetherin g
groups of size s. Find a schedule of play
for w weeks such that no pair of golfers
play together more than once

Individual golfers don’t need to be identified.
language Essence 1.3 Symmetry avoided.
given w, g, s : int(1l..)

L;etting Golfers be new type of size g * s
ind sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

such that
forAll gl, g2 : Golfers, gl < g2 .
(sum week in sched . toInt (together({gl, g2}, week))) <=1

MIP
Solving

© 00Uk W+

Constraint Modelling Pipeline: Essence

Essence * Example: Social Golfers Problem.

* In a golf club there are a number of
golfers who wish to play togetherin g
groups of size s. Find a schedule of play
for w weeks such that no pair of golfers
play together more than once

One highly-structured decision variable.

Conjure

Essence
Prime

1 language Essence 1.3
2 given w, g, s : int(1l..)
3 letting Golfers be new type of size g * s
4 | find sched : set (size w) of
5 partition (regular, numParts g, partSize s)
6 from Golfers
7 such that
SAT CP SMT MIP 8 forAll gl, g2 : Golfers, gl < g2 .
9 (sum week in sched . toInt (together({gl, g2}, week))) <=1

Solving Solving Solving Solving

Constraint Modelling Pipeline: Essence

Essence

Conjure

Essence
Prime

SAT
Solving

CP
Solving

SMT
Solving

MIP
Solving

© 00Uk W+

* Example: Social Golfers Problem.

* In a golf club there are a number of
golfers who wish to play togetherin g
groups of size s. Find a schedule of play
for w weeks such that no pair of golfers
play together more than once

language Essence 1.3
given w, g, s : int(1l..)

The socialisation constraint

letting Golfers be new type of size g x s

find sched : set (size w)

partition (regular,

from Golfers

of

numParts g, partSize s)

such that
forAll gl, g2 : Golfers
(sum week in sched .

, 9l < g2 .
toInt (together ({gl,

g2}, week)))

<=1

NB Having described the combinatorial structure to be found using
Essence’s types this is the only constraint left to be stated.

The Pipeline: Conjure

Constraint Modelling Pipeline: Conjure

Essence

Conjure

Essence
Prime

SAT CP SMT MIP
Solving Solving Solving Solving

© 00O Ut W+

* We can’t typically solve an Essence
specification directly.

* We use the Conjure system to refine an
Essence specification into Essence Prime.

* A subset of Essence with facilities common in
constraint modelling languages.

* (Matrices of) Integer, Boolean variables.
* Logical, Arithmetic, Global Constraints.

language Essence 1.3

given w, g, s : int(1l..)

letting Golfers be new type of size g x s

find sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

such that

forAll gl, g2 : Golfers, gl < g2 .
(sum week in sched . tolInt (together({gl, g2}, week))) <=1

Constraint Modelling Pipeline: Conjure

* Refinement proceeds from the choice of
Essence representation of the decision variables.

* The outer structure of sched here is a
e fixed-cardinality set.

* A natural model is via a matrix:
sched

Prime
<partition> <partition> <partition> <partition>
Structural constraint: AllDifferent(sched)
language Essence 1.3

given w, g, s : int(1l..)
letting Golfers be new type of size g * s

find sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

SAT Ccp SMT MIP

Solving Solving Solving Solving

such that
forAll gl, g2 : Golfers, gl < g2 .
(sum week in sched . toInt (together({gl, g2}, week))) <=1

© 00 O Tt W+

Constraint Modelling Pipeline: Conjure

» Key advantage of refinement-based approach:
* Recognise and break symmetry as it enters the model.

* By refining a set to an indexed matrix we introduce
symmetry: permuting the weeks is solution-preserving.

Conjure knows this and adds constraints to break this
symmetry:

Essence

Conjure

Essence

Sl —-—m--_

<partition> <partition> <partition> <partition>
(and the AIIleferent is automatlcally removed)

language Essence 1.3
given w, g, s : int(1l..)
letting Golfers be new type of size g * s

find sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

SAT Ccp SMT MIP

Solving Solving Solving Solving

such that
forAll gl, g2 : Golfers, gl < g2 .
(sum week in sched . toInt (together({gl, g2}, week))) <=1

© 00O Ot W+

Constraint Modelling Pipeline: Conjure

Essence

Conjure

Essence
Prime

SAT CP SMT
Solving Solving Solving

MIP
Solving

* We can think of a partition as a constrained
set of sets:

Domain: {1, ..., g x s}
Where g x s is the
number of golfers

Parts (i.e. groups)

B

Elements of each
part (i.e. golfers)

Again,
breaking
symmetry
- B

Structural constraint: AllDifferent

language Essence 1.3
given w, g, s : int(1l..)
letting Golfers be new type of size g * s

find sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

such that

forall gl, g2
(sum week in sched .

: Golfers, gl < g2 .

© 00 O Tt W+

toInt (together ({gl, g2}, week))) <=1

Constraint Modelling Pipeline: Conjure

* Giving (a) representation of sched:

Essence Parts (i.e. groups)

cemert [FSENIEPED

s of each
part (i.e.
golfers) u

Conjure

Essence
Prime

Partitions

Weeks

language Essence 1.3

given w, g, s : int(1l..)

letting Golfers be new type of size g * s

find sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

SAT Ccp SMT MIP

Solving Solving Solving Solving such that
forAll gl, g2 : Golfers, gl < g2 .

(sum week in sched . toInt (together({gl, g2}, week))) <=1

© 00 O Ut W N+

Constraint Modelling Pipeline: Conjure

Essence

Conjure

Essence
Prime

SAT CP SMT
Solving Solving Solving

MIP
Solving

* Conjure then refines the constraints to suit
the representation chosen:

Parts (i.e. groups)

12 . e N
4 .
s
[|
=]

Disallow 4, 5 in the same
group in any other week
How:

* Represent the
intersection between
parts in different
weeks.

* Ensure size at most 1.

Elements of each
part (i.e. golfers)

language Essence 1.3
given w, g, s : int(1l..)
letting Golfers be new type of size g * s

find sched : set (size w) of
partition (regular, numParts g, partSize s)
from Golfers

such that

forall gl, g2
(sum week in sched .

: Golfers, gl < g2 .
toInt (together ({gl, g2}, week))) <=1

© 00 O Tt W+

Constraint Modelling Pipeline: Conjure

Essence

Conjure

Essence
Prime

SAT CP SMT
Solving Solving Solving

e Conjure has alternative refinement rules for
both decision variable and constraint
representation.

* Allows us to explore the space of models.

* Heuristics to select models likely to be
effective. Parts (i.e. groups)

o
Elements of each u 0/1

part (i.e. golfers) -
[
[
3 o

Structural: each column sums to s.

MIP
Solving

The Pipeline: Savile Row

Constraint Modelling Pipeline: Savile Row

Essence

Conjure

Essence
Prime

SAT CP SMT
Solving Solving Solving

(1,2, 3] (1, 4,7] [1,5,9]
3 groups, size 3 (4,5,6] [2,5,8] (2,6,7]
[7,8,9] (3,6,9] (3,4,8]

Solution to an instance of Social Golfers

* The Essence Prime model is close to the input
of a constraint solver.

 Savile Row is responsible for:
 Tailoring this model to a particular solver
* Or encoding to a different formalism.

VIIA « \While further enhancing the model.

Solvin . e . .
2 * E.g. Common subexpression elimination,
tabulation.

Constraint Modelling Pipeline: Savile Row

 Common Subexpression Elimination Example:

Essence

* Two constraints over four variables, each with
domain {0, ..., 10}.

*W+X+y+z2=6 Largest contiguous subexpression visible
s zZ+y+ws= 5 through normalisation: y + z

Conjure

E;jfm”‘;e * Making both constraints consistent
individually does not reveal that x = 1.

e Savile Row extracts the common
subexpression w + y + z and replaces it with a
variable a:

*a=W+y+z
SAT CpP SMT MIP . .
: : . , *a=5 Simple Bounds consistency reveals x = 1
Solving Solving Solving Solving

*Xx+a=6

Constraint Modelling Pipeline: Savile Row

Essence

Conjure

Essence
Prime

SAT CP
Solving Solving

SMT
Solving

MIP
Solving

* Tabulation Example:

given n: int

given startCol, startRow
find tour
such that
allDiff (tour),
tour([0]
forAll i : int (0..n*n-2) .
((ltour[i]%n — tour[i+1l]%n|
((ltour[i]%n — tour[i+1l]%n|

* These complex expressions constraining the moves propagate

poorly.

2

of int (0..n*n-1)

: int (0..n-1)
: matrix indexed by

[int (0. .nxn-1)]

= startCol + (startRow)*n,

1) /\ (ltour[i]/n - tour[i+1]/n|
2) /\ (ltour[il/n - tour[i+1]/n|

* |nstead tabulate their allowed values.

* GAC on the table.

2)) \/
1))

Fruitful Branches

Branches

* The Constraint Modelling Pipeline project has had several offshoots,
some of which themselves have been developing for several years.

* Examples:
e Automated Streamlining.
e Athanor: Local search on Essence.
* AutolG: Automatic Instance Generation.

Streamlining

e Our pipeline infrastructure also supports Streamlining:
* As first proposed by Gomes and Sellmann in:

* Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Principles and Practice of Constraint
Programming - CP 2004, pp. 274-289. Springer (2004)
e Streamlining is an attempt to focus the search onto a promising area
of the search space.

e Streamliners are:

* Uninferred constraints (i.e. not guaranteed to be sound), added to a constraint model.
* Will reduce the search space, sometimes drastically.
* The intention is to retain at least one solution.

Automated streamliner portfolios for constraint
satisfaction problems. P. Spracklen, N. Dang, O. Akgiin,
I. Miguel. Artificial Intelligence, 319, 2023.

Automating Streamlining

* As originally conceived, streamlining is a manual process.

* For a parameterised problem class of interest:
* Solve small instances with an initial model.
* Observe solutions to these instances, looking for patterns.
* Use these patterns to conjecture candidate streamliners.
* Test these streamliners on larger and more difficult instances.

* When successful, streamlining can lead to a huge reduction in search effort.
* An automated approach is therefore desirable.

First Order Streamlining Rules

* We have a set of rules that automate the generation of streamliners
from the structures in an Essence specification.

* Examples:

* Integer:

e Take an odd (or similarly, even) value.

* Restrict to upper (or lower) half of values.
* Function:

* Monotonically increasing (or decreasing).

* Insist that a binary function is commutative (or non-commutative), or associative.
* Relation:

* Insist that it is reflexive, irreflexive, symmetric, ...

Higher Order Streamlining Rules

e Lift first-order and higher-
order streamlining rules to work on nested domain constructors of
Essence.

* Examples: all, half, at most one.

* So now if we have a set of integers, we can say:
* Half must be even.

* Or if we have a set of multisets of integers:

* For half of the multisets restrict the elements to the upper half of their
domain.

Candidate Streamliners

Problem #Candidate

Streamliners
BACP 108
BIBD 200
CoveringArray 64
Car Sequencing 36
EFPA 312
FLECC 144
Transshipment 68
Tail Assignment 336
Social Golfers 260
Vessel Loading 208

e Streamliners can also be combined.

* Simple example:

* This integer variable should be both
odd and restricted to the upper half
of its domain.

 So, typically a large number of
candidate streamliners for a
problem class.

* Problem:
* We don’t know which will be
effective.
* Might remove all solutions, or not help.

* We don’t know how performance
varies between instances.

ldentifying Effective Combinations of
Streamliners

* Two objectives:
* Applicability: The proportion of training instances for which the streamlined

model admits a solution.
* Reduction: The mean search reduction in solving time achieved by the

streamliner on the satisfiable instances.
* We want to search for a portfolio of Pareto-optimal streamlined

models.
* i.e. Streamliners whose <application, reduction> pair measure is not

dominated.

ldentifying Effective Combinations of
Streamliners

 Combining streamliners can result
in larger performance gains.

* |deally, we would consider the
power set of streamliner
combinations.

* The space can be pruned:

* |If a streamliner combination has
zero applicability, its supersets are
not explored.

e Combinations of streamliners that

are tagged as being mutually
exclusive are not explored.

Monte Carlo Tree Search

* Even after pruning, the number of combinations to consider is still
typically too large to allow exhaustive enumeration.

* To search the lattice structure for a portfolio of Pareto optimal
streamlined models we employ a Monte Carlo Tree Search style
algorithm:

2. Expansion 3. Simulation 4. BackPropagation

()

/
A

Run Streamliner ABC

Simulation phase uses the pipeline to evaluate the
streamlined specification. i

Instance Generation
via AutolG

e Often the case that training instances required to integrate ML with CP.

* E.g. in Automated Streamlining we generate a large number of candidate
training instances for each pair of problem class and solver via AutolG.

* Allows users to describe the generation of instances for a given problem
class declaratively as an instance generation model.
* Parameters to the Essence specification of the original model, which describe

instance data that define an individual instance, are transformed into decision
variables.

* Constraints are added to capture bounds or relationships between the instance
data.

* Solutions to the instance generation model are instances of the original

prObIem- A framework for generating informative benchmark
instances. N Dang, O Akgun, J Espasa, | Miguel and P
Nightingale. CP 2022.

Fragment of an Instance Generation Model

given n_warehouses_middle: int(1..100)
given n_warehouses_delta: int(0..49)
find n_warehouses: int(1..100)
such that
n_warehouses >= n_warehouses_middle -
n_warehouses <= n_warehouses_middle + n.)

warehouses_delta,
arehouses_delta

* From the transshipment problem.

* Considers the design of a distribution network, which includes a number of
warehouses and transshipment points to serve a numbekof customers.

* The instance generation model is itself parameterised.
* This is to allow the algorithm configuration tool Irace to control the instance
generation process.

* We search for satisfiable instances that are solvable by a chosen solver
within the solving time range of, e.g., [10,300] seconds.

* Lower bound of 10 seconds avoids trivially solvable instances, as the gain when
applying streamliners on such instances are often negligible.

given n_warehouses_middle: int(1..100)
given n_warehouses_delta: int(0..49)

Sea rChing for InStanceS find n_warehouses: int(1..100)

such that
n_warehouses >= n_warehouses_middle - n_warehouses_delta,
n_warehouses <= n_warehouses_middle + n_warehouses_delta

* Irace decides on an instance of[the generator model.
* |.e. values for these parameters.

* Solved to produce an instance of the original model.

* This in turn is solved to evaluate its suitability for training.
* |l.e. within [10,300] seconds.

* The results fed back to Irace to guide its future choices.

* Instance generation stops once a given tuning budget is exhausted.
* All instances satisfying the required properties are returned.

 Clustering can then be used to to select a smaller representative
subset of training instances.

Solving Essence

Specifications Directly. f"(\

Essence w

Conjure

Essence
Prime

Savile
Row

13 B I

* Rather than the refinement approach
of the pipeline, we can attempt to
solve an Essence specification directly.

* Athanor takes a constraint-based
local search approach.
* Generating an initial assignment.

* Iteratively modify this assighnment to
improve an objective through a
sequence of moves.

 Selected from a neighbourhood

of assighnments reachable from the
current assighment.

SAT CP SMT MIP Athanor: high-level local search over abstract constraint
specifications in Essence. S Attieh, N Dang, C Jefferson, |

Miguel, P Nightingale. IJCAI 2019.

Solving Solving Solving Solving

Solving Essence Specifications Directly.

Essence _;@ * Advantage of proceeding from Essence:
 structure apparent in an abstract

specification of a problem can be
exploited to generate

Conjure high quality neighbourhoods.
* Proceeds from the Essence types:
T — * Set, multiset, sequence, function, relation,
i v and partition.
* Neighbourhoods preserve this
structure:

* Select a set and remove an element.
* Select a set and add an element.

* Select two sets, move an element from
one to the other: moves connections
SAT CcP S MIP to where they may be better used, i.e. to
SoIving Solving SoIving Solving connect to more nodes_

Similar neighbourhoods for other types.

Summary

Conclusions

* The Constraint Modelling Pipeline has been in development for over
two decades.

* A main branch, and fruitful side-projects.
 Sustained by a combination of continuity and collaboration.
* Actively interested in interfacing with your work/ideas.

